首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of TiSixNy superhard coatings with different Si contents were prepared on M42 steel substrates using two Ti and two Si targets by reactive magnetron sputtering at 500 °C. These samples were subsequently vacuum-annealed at 500, 600, 700, 800 and 900 °C, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microindenter, Rockwell hardness tester and scratch tester were applied to investigate the microstructure, phase configuration, hardness and adhesion properties of as-deposited and annealed samples. The results indicated that there were two bonds, TiN and Si3N4, in all presently deposited TiSixNy thin films, that structure was nanocomposite of nanocrystalline (nc-) TiN embedded into amorphous Si3N4 matrices. Annealing treatment below 900 °C played a little role in microstructure and hardness of the coatings although it greatly affected those of steel substrates. The film-substrate adhesion strength was slightly increased, followed by an abrupt decrease with increasing annealing temperature. Its value got to the maximum at 600 °C. Annealing had little effect on the friction coefficient with its value varying in the range of 0.39-0.40.  相似文献   

2.
CrN, CrSiN and CrCuN films were deposited by DC magnetron reactive sputtering with hot pressed pure Cr, CrSi, and CrCu targets, respectively. As substrate bias increased from −50 V to −200 V, the preferred orientation of CrN films changed from (1 1 1) to (2 0 0). And the Si doping did not change this condition. However, the Cu doping films kept (2 0 0) orientation all along. CrN films presented typical columnar structure, and the alloying of Si and Cu could restrain columnar growth leading to dense structure. The CrSiN film was composed of nanocrystallites distributed in amorphous Si3N4, while no amorphous phase existed in CrCuN films.  相似文献   

3.
In this study, (TiVCrZrHf)N multi-component coatings with quinary metallic elements were deposited by reactive magnetron sputtering system. The composition, structure, and mechanical properties of the coatings deposited at different N2 flow rates were investigated. The (TiVCrZrHf)N coatings deposited at N2 flow rates of 0, 1, and 2 SCCM showed an amorphous structure, whereas those deposited at N2 flow rates of 4 and 6 SCCM showed a simple face-centered cubic solid solution structure. A saturated nitride coating was obtained for N2 flow of 4 SCCM and higher. By increasing N2 flow to 4 SCCM, the hardness and modulus reached a maximum value of 23.8 ± 0.8 and 267.3 ± 4.0 GPa, respectively.  相似文献   

4.
A series of Zr-Si-N composite films with different Si contents were synthesized in an Ar and N2 mixture atmosphere by the bi-target reactive magnetron sputtering method. These films’ composition, microstructure and mechanical properties were characterized by energy dispersive spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy and nanoindentation. Experimental results revealed that after the addition of silicon, Si3N4 interfacial phase formed on the surface of ZrN grains and prevented them from growing up. Zr-Si-N composite films were strengthened at low Si content with the hardness and elastic modulus reaching their maximum values of 29.8 and 352 GPa at 6.2 at% Si, respectively. With a further increase of Si content, the crystalline Zr-Si-N films gradually transformed into amorphous, accompanied with a remarkable fall of films’ mechanical properties. This limited enhancement of mechanical properties in the Zr-Si-N films may be due to the low wettability of Si3N4 on the surface of ZrN grains.  相似文献   

5.
HfC/Si3N4 nanomultilayers with various thicknesses of Si3N4 layer have been prepared by reactive magnetron sputtering. Microstructure and mechanical properties of the multilayers have been investigated. The results show that amorphous Si3N4 is forced to crystallize and grow coherently with HfC when the Si3N4 layer thickness is less than 0.95 nm, correspondingly the multilayers exhibit strong columnar structure and achieve a significantly enhanced hardness with the maximum of 38.2 GPa. Further increasing Si3N4 layer thickness leads to the formation of amorphous Si3N4, which blocks the coherent growth of multilayer, and thus the hardness of multilayer decreases quickly.  相似文献   

6.
Structure and mechanical properties of reactive sputtering CrSiN films   总被引:1,自引:0,他引:1  
CrSiN films with various Si contents were deposited by reactive magnetron sputtering using the co-deposition of Cr and Si targets in the presence of the reactive gas mixture. Comparative studies on microstructure and mechanical properties between CrN and CrSiN films with various Si contents were carried out. The structure of the CrSiN films was found to change from crystalline to amorphous structure as the Si contents increase. Amorphous phase of Si3N4 compound was suggested to exist in the CrSiN film. The growth of films has been observed from continuous columnar structure, granular structure to glassy-like appearance morphology with the increase of silicon content. The film fracture changed from continuous columnar structure, granular structure to glassy-like appearance morphology with the increase of silicon content. Two hardness peaks of the films as function of Si contents have been discussed.  相似文献   

7.
In this work amorphous silicon oxynitride films with similar composition (ca. Si0.40N0.45O0.10) were deposited by reactive magnetron sputtering from a pure Si target under different N2-Ar mixtures. Rutherford backscattering (RBS) studies revealed that the coatings presented similar composition but different density. The mechanical properties evaluated by nanoindentation show also a dependence on the deposition conditions that does not correlate with a change in composition. An increase in nitrogen content in the gas phase results in a decrease of hardness and Young's modulus.The microstructural study by high resolution scanning electron microscopy (SEM-FEG) on non-metalized samples allowed the detection of a close porosity in the form of nano-voids (3-15 nm in size), particularly in the coatings prepared under pure N2 gas. It has been shown how the presence of the close porosity allows tuning the refraction index of the films in a wide range of values without modifying significantly the chemical, thermal and mechanical stability of the film.  相似文献   

8.
Using a novel inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with magnetic confinement system, Ti-Si-N films were prepared on single-crystal silicon wafer substrates by sputtering Ti and Si (5 at.%:1 at.%) alloyed target in argon/nitrogen plasma. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), atomic force microscopy (AFM) and Nano Indenter XP tester were employed to characterize nanostructure and performances of the films. These films were essentially composed of TiN nanocrystallites embedded in an amorphous Si3N4 matrix with maximum hardness value of 44 GPa. Experimental results showed that the film hardness was mainly dependent on the TiN crystallite size and preferred orientation, which could be tailored by the adjustment of the N2/Ar ratio. When the N2/Ar ratio was 3, the film possessed the minimum TiN size of 10.5 nm and the maximum hardness of 44 GPa.  相似文献   

9.
The polycrystalline Ti/TiNx multilayer films were deposited by magnetron sputtering, and the as-deposited multilayer coatings were annealed at 500-800 °C for 2-4 h in vacuum. We investigated the effects of annealing temperature and annealing time on the microstructural, interfacial, and mechanical properties of the polycrystalline Ti/TiNx multilayer films. It was found that the hardness increased with annealing temperature. This hardness enhancement was probably caused by the preferred crystalline orientation TiN(1 1 1). The X-ray reflectivity measurements showed that the layer structure of the coatings could be maintained after annealing at 500 °C and the addition of the Si3N4 interlayer to Ti/TiNx multilayer could improve the thermal stability to 800 °C.  相似文献   

10.
Materials’ surface service property could be enhanced by transition metal nitride hard coatings due to their high hardness, wear and high temperature oxidation resistance, but the higher friction coefficient (0.4-0.9) of which aroused terrible abrasion. In this work, quinternary (Ti,Al,Si,C)N hard coating 3-4 μm was synthesized at 300 °C using plasma enhanced magnetron sputtering system. It was found that the coating's columnar crystals structure was restrained obviously with the increase of C content and a non-columnar crystals growth mode was indicated at the C content of 33.5 at.%. Both the XRD and TEM showed that the (Ti,Al,Si,C)N hard coatings had unique nanocomposite structures composed of nanocrystalline and amorphous nc-(Ti,Al)(C,N)/nc-AlN/a-Si3N4/a-Si/a-C. However, the coatings were still super hard with the highest hardness of 41 GPa in spite of the carbon incorporation. That a-C could facilitate the graphitization process during the friction process which could improve the coating's tribological performance. Therefore, that nanocomposite (Ti,Al,Si,C)N coatings with higher hardness (>36 GPa) and a lower friction coefficient (<0.2) could be synthesized and enhance the tribological performance and surface properties profoundly.  相似文献   

11.
This paper reports that amorphous silicon nitride (a-SiNx) overcoats were deposited at room temperature by microwave ECR plasma enhanced unbalanced magnetron sputtering. The 2 nm a-SiNx overcoat has better anti-corrosion properties than that of reference a-CNx overcoats (2-4.5 nm). The superior anti-corrosion performance is attributed to its stoichiometric bond structure, where 94.8% Si atoms form Si-N asymmetric stretching vibration bonds. The N/Si ratio is 1.33 as in the stoichiometry of Si3N4 and corresponds to the highest hardness of 25.0 GPa. The surface is atomically smooth with RMS < 0.2 nm. The ultra-thin a-SiNx overcoats are promising for hard disks and read/write heads protective coatings.  相似文献   

12.
The ellipsometric characterizations of amorphous beryllium nitride (a-Be3N2) thin films deposited on Si (1 0 0) and quartz at temperature <50 °C using reactive RF sputtering deposition were examined in the wavelength range 280-1600 nm. X-ray diffraction of the films showed no structure, suggesting the Be3N2 films grown on the substrates are amorphous. The composition and chemical structures of the amorphous thin films were determined by using electron spectroscopy for chemical analysis. The surface morphology of a-Be3N2 was characterized by atomic force microscopy. The thicknesses and optical constants of the films were derived from spectroscopic ellipsometry measurements. The variation of the optical constants with thickness of the deposited films has been investigated. From the angle dependence of the polarized reflectivity we deduced a Brewster angle of 64°. At any angle of incidence, the a-Be3N2 shown high transmissivity (80-99%) and low reflectivity (<18%) in the visible and near infrared regions. Hence, the a-Be3N2 could be a good candidate for antireflection optical coatings under conditions of optimized the type of polarization and the angle of incidence.  相似文献   

13.
In this study, TiVCr alloy coatings were deposited on Si substrates by magnetron sputtering system at different working pressures (0.33-1 Pa). The TiVCr coatings have a composite structure with amorphous and body-centered cubic (bcc) crystal phases comprised of bundles of fine fibrous structures and V-shaped columnar structures, respectively. Compared with the amorphous zone, the crystalline zone has a denser and more compact structure. The coating microstructure became more porous as working pressure increased. Consequently, the crystal zones of the deposited coatings at 0.33 Pa obtained higher hardness (11.6 GPa) while the deposited coatings at 1 Pa achieved lower hardness (4.5 GPa).  相似文献   

14.
In this work, we extracted the film's hardness (HF) of ultra-thin diamond-like carbon layers by simultaneously taking into account the tip blunting and the substrate effect. As compared to previous approaches, which did not consider tip blunting, this resulted in marked differences (30-100%) for the HF value of the thinner carbon coatings. We find that the nature of the substrate influences this intrinsic film parameter and hence the growth mechanisms. Moreover, the HF values generally increase with film thickness. The 10 nm and 50 nm thick hydrogenated amorphous carbon (a-C:H) films deposited onto Si have HF values of, respectively, ∼26 GPa and ∼31 GPa whereas the 10 nm and 50 nm thick tetrahedral amorphous carbon (t-aC) films deposited onto Si have HF values of, respectively, ∼29 GPa and ∼38 GPa. Both the a-C:H and t-aC materials also show higher density and refractive index values for the thicker coatings, as measured, respectively by X-ray reflectometry and optical profilometry analysis. However, the Raman analysis of the a-C:H samples show bonding characteristics which are independent of the film thickness. This indicates that in these ultra-thin hydrogenated carbon films, the arrangement of sp2 clusters does not relate directly to the hardness of the film.  相似文献   

15.
CrSiN coatings were deposited on stainless steel (Grade: SA304) and silicon Si(1 0 0) substrates, with varying argon-nitrogen gas proportions and deposition temperature, using reactive magnetron sputtering technique in the present work. The influence of sputtering (Ar) and reactive gas proportions (N2) and temperature on the structural properties of the CrSiN coating was investigated. A small amount of silicon content (3.67 at.% Si) plays a crucial role in addition to the nitrogen content for the formation of different phases in the CrSiN coatings as observed in the present work. For example, the coating with comparatively low nitrogen content, 40% N2, during deposition, formed a crystalline structure consisting of nano-crystalline CrN which is separated by an amorphous SiN phase, as evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formation of CrN(1 1 1) and Cr2N(1 1 1) phases has occurred at 30% N2 with 3.67% Si content, which transformed in to CrN(1 1 1) and CrN(2 0 0) with increase in N2 content but with same Si content. The surface topography and morphology of the coatings were analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), respectively. A less columnar growth is observed in CrSiN coatings deposited at low argon content, Ar:N2 (20:80), and with 3.67 at.% Si in the coatings. However, it becomes dense with increase in nitrogen content and temperature. The XRD analysis showed that the intensity of a dominating peak (1 1 1) is decreasing from (80:20) to (60:40) argon:nitrogen environment. With a further increase of nitrogen content, from (60:40), in the sputtering gas mixture, to (40:60) argon-nitrogen, there is a sudden increase in (1 1 1) peak and above (40:60), the peak reduction rate is very slow than the previous one. The (1 1 1) and (2 0 0) peak intensity variations are very limited due to high nitrogen content, above 50%, and considerable amount of Si atoms, 3.67 at.%, present in the CrN coatings.  相似文献   

16.
The stresses at Si3N4/Si (1 0 0), (1 1 1) and (1 1 0) interfaces were measured by UV Raman spectroscopy with a 364 nm excitation laser whose penetration depth into the Si substrate was estimated to be 5 nm. The Si3N4 films were formed on Si (1 0 0), (1 1 1) and (1 1 0) using nitrogen-hydrogen (NH) radicals produced in microwave-excited high-density Xe/NH3 mixture plasma. The localized stress detected from Raman peak shift was compressive at the (1 0 0) interface, and tensile at the (1 1 1) and (1 1 0) interfaces. The results showed that stress had strong correlation with the total density of subnitrides at the Si3N4/Si interface, and also with the full-width at half-maximum (FWHM) of Si the 2p3/2 photoemission spectrum arising from the substrate. We believe that the localized stress affected subnitride formation because the amount of subnitride and the FWHM of Si 2p3/2 decreased while the interface stress shifted in the tensile direction.  相似文献   

17.
The coatings with different phosphorus contents were obtained by varying the concentration of H3PO3 in the electroplating bath. With the increase of phosphorus content, the structure of the Ni-P electrodeposited coatings transformed from microcrystalline to a mixture of nanocrystalline and amorphous phases, then to amorphous phase. A high hardness value of 710 HV0.1 of as-deposited Ni-P coating was obtained at 8.3 at.% phosphorus content, and high wear resistance was accordingly achieved. The refined nanocrystalline grains with average size of about 7 nm were found to be responsible for the high hardness and improved wear resistance of the as-deposited Ni-P electrodeposited coating.  相似文献   

18.
研究了Si3N4层在ZrN/Si3N4纳米多层膜中的晶化现象及其对多层膜微结构与力学性能的影响. 一系列不同Si3N4层厚度的ZrN/Si3N4纳米多层膜通过反应磁控溅射法制备. 利用X射线衍射仪、高分辨透射电子显微镜和微力学探针表征了多层膜的微结构和力学性能. 结果表明,由于受到ZrN调制层晶体结构的模板作用,溅射条件下以非晶态存在的Si3N4层在其厚度小于0.9 nm时被强制晶化为NaCl结构的赝晶体,ZrN/Si3N4纳米多层膜形成共格外延生长的柱状晶,并相应地产生硬度升高的超硬效应. Si3N4随层厚的进一步增加又转变为非晶态,多层膜的共格生长结构因而受到破坏,其硬度也随之降低.  相似文献   

19.
Cr-modified silicide coatings were prepared on a Ti-Nb-Si based ultrahigh temperature alloy by Si-Cr co-deposition at 1250 °C, 1350 °C and 1400 °C for 5-20 h respectively. It was found that both coating structure and phase constituents changed significantly with increase in the co-deposition temperature and holding time. The outer layers in all coatings prepared at 1250 °C for 5-20 h consisted of (Ti,X)5Si3 (X represents Nb, Cr and Hf elements). (Ti,X)5Si4 was found as the only phase constituent in the intermediate layers in both coatings prepared at 1250 °C for 5 and 10 h, but the intermediate layers in the coatings prepared at 1250 °C for 15 and 20 h were mainly composed of (Ti,X)5Si3 phase that was derived from the decomposition of (Ti,X)5Si4 phase. In the coating prepared at 1350 °C for 5 h, single (Ti,X)5Si3 phase was found in its outmost layer, the same as that in the outer layers in the coatings prepared at 1250 °C; but in the coatings prepared at 1350 °C for 10-20 h, (Nb1.95Cr1.05)Cr2Si3 ternary phase was found in the outmost layers besides (Ti,X)5Si3 phase. In the coatings prepared at 1400 °C for 5-20 h, (Nb1.95Cr1.05)Cr2Si3 ternary phase was the single phase constituent in their outmost layers. The phase transformation (Ti,X)5Si4 → (Ti,X)5Si3 + Si occurred in the intermediate layers of the coatings prepared at 1350 and 1400 °C with prolonging co-deposition time, similar to the situation in the coatings prepared at 1250 °C for 15 and 20 h, but this transformation has been speeded up by increase in the co-deposition temperature. The transitional layers were mainly composed of (Ti,X)5Si3 phase in all coatings. The influence of co-deposition temperature on the diffusion ability of Cr atoms was greater than that of Si atoms in the Si-Cr co-deposition processes investigated. The growth of coatings obeyed inverse logarithmic laws at all three co-deposition temperatures. The Si-Cr co-deposition coating prepared at 1350 °C for 10 h showed a good oxidation resistance due to the formation of SiO2 and Nb, Cr-doped TiO2 scale after oxidation at 1250 °C for 10 h.  相似文献   

20.
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号