首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thin films of pure TiO2 have been prepared using both spin-coating and sputter-deposition techniques on sapphire and quartz substrates. The structural characteristics of the films have been investigated in detail using Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). When annealed in vacuum, all films demonstrate room temperature ferromagnetism, while the air-annealed samples show much smaller, often negligible, magnetic moments. The magnetization of the vacuum-annealed sputtered samples depends on film thickness, with the volume magnetization decreasing monotonically with increasing thickness. Furthermore, the magnetization per unit area also decreases slightly with increasing film thickness. These results suggest that ferromagnetism in the vacuum-annealed TiO2 films is mediated by surface defects or interfacial effects, but does not arise from stoichiometric crystalline TiO2.  相似文献   

2.
Titanium dioxide thin films have been deposited by reactive magnetron sputtering on glass substrate and subsequently irradiated by UV radiation using a KrF excimer laser. In this work, we have study the influence of the laser fluence (F) ranging between 0.05 and 0.40 mJ/cm2 on the constitution and microstructure of the deposited films. Irradiated thin films are characterized by profilometry, scanning electron microscopy and X-ray diffraction. As deposited films are amorphous, while irradiated films present an anatase structure. The crystallinity of the films strongly varies as a function of F with maximum for F = 0.125 J/cm2. In addition to the modification of their constitution, the irradiated areas present a strongly modified microstructure with appearance of nanoscale features. The physico-chemical mechanisms of these structural modifications are discussed based on the theory of nucleation.  相似文献   

3.
Titanium dioxide (TiO2) thin films have been widely coated in the self-cleaning glass for facade application. The benefit of these glasses is its ability to actively decompose organic compounds with the help of ultraviolet light. Understanding the surface roughness of TiO2 thin films is important before manufacturing of self-cleaning glasses using TiO2 thin films because surface roughness of TiO2 thin films has highly significant influence on the photocatalytic performance. Traditional approach for measuring surface roughness of TiO2 thin films is atomic force microscopy. The disadvantage of this approach include long lead-time and slow measurement speed. To solve this problem, an optical inspection system for rapidly measuring the surface roughness of TiO2 thin films is developed in this study. It is found that the incident angle of 60° is a good candidate for measuring surface roughness of TiO2 thin films and y=90.391x+0.5123 is a trend equation for predicting the surface roughness of TiO2 thin films. Roughness average (Ra) of TiO2 thin films (y) can be directly determined from the peak power density (x) using the optical inspection system developed. The results were verified by white-light interferometer. The measurement error rate of the optical inspection system developed can be controlled by about 8.8%. The saving in inspection time of the surface roughness of TiO2 thin films is up to 83%.  相似文献   

4.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

5.
Cr doped TiO2-SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structural and chemical properties of the films. A UV-vis spectrophotometer was used to measure the transmittance spectra of the thin film. The hydrophilicity of the thin film during irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that Cr doping has a significant effect on the transmittance and super-hydrophilicity of TiO2-SiO2 thin film.  相似文献   

6.
Immobilized activated carbon doped TiO2 thin films were prepared by sol–gel dip coating method by using Titanium IV isopropoxide as a precursor. Aim of our work is to synthesize and investigate the structural, surface morphology and optical properties of the synthesized thin film. X-ray diffraction pattern reveals that the crystallinity of the film increases with increase in temperature. Also, the structural parameters such as particle size, microstrain and dislocation density have been calculated. The formation of nanosphere of diameter ranging from 300 nm to 500 nm has been confirmed by Scanning electron microscope. Photocatalytic active large optical band gap at 3.75 eV was found by using UV–visible sspectrum.  相似文献   

7.
The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.  相似文献   

8.
Fe-doped mesoporous titanium dioxide (M-TiO2-Fe) thin films have been prepared on indium tin oxide (ITO) glass substrates by sol–gel and spin coating methods. All films exhibited mesoporous structure with the pore size around 5–9 nm characterized by small angle X-ray diffraction (SAXRD) and further confirmed by high resolution transmission electron microscopy (HRTEM). Raman spectra illustrated that lower Fe-doping contributed to the formation of nanocrystalline of M-TiO2-Fe thin films. X-ray photoelectron spectroscopy (XPS) data indicated that the doped Fe ions exist in forms of Fe3+, which can play a role as e or h+ traps and reduce e/h+ pair recombination rate. Optical properties including refractive indices/n, energy gaps/Eg and Urbach energy width/E0 of the thin films were estimated and investigated by UV/vis transmittance spectra. The presence of Fe content extended the light absorption band and decreased the values of n, implying enhanced light response and performance on dye-sensitized solar cells (DSSC). The optimum Fe content in M-TiO2-Fe thin films is determined as 10 mol%, for its compatibility of well crystalline and well potential electron transfer performance.  相似文献   

9.
Nanocrystalline SnO2 thin films were deposited by simple and inexpensive chemical route. The films were characterized for their structural, morphological, wettability and electrochemical properties using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy techniques (SEM), transmission electron microscopy (TEM), contact angle measurement, and cyclic voltammetry techniques. The XRD study revealed the deposited films were nanocrystalline with tetragonal rutile structure of SnO2. The FT-IR studies confirmed the formation of SnO2 with the characteristic vibrational mode of Sn-O. The SEM studies showed formation of loosely connected agglomerates with average size of 5-10 nm as observed from TEM studies. The surface wettability showed the hydrophilic nature of SnO2 thin film (water contact angle 9°). The SnO2 showed a maximum specific capacitance of 66 F g−1 in 0.5 Na2SO4 electrolyte at 10 mV s−1 scan rate.  相似文献   

10.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

11.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

12.
Previous studies suggest that granular interfaces induce a natural and persistent super-hydrophilicity in TiO2-SiO2 composite thin films deposited by sol-gel route. This effect enables to consider self-cleaning applications that do not require a permanent UV exposure, whereas such a permanent exposure is necessary for pure TiO2 films. In this study, TiO2-SiO2 composite thin films have been deposited from a TiO2 anatase crystalline suspension and different SiO2 polymeric sols. Wettability studies show that a suitable control of the TiO2-SiO2 mixed sol formulations noticeably enhances persistence of the natural super-hydrophilicity in composite films. It is shown that, beside granular interface effects, modifications in the composite film morphologies can noticeably influence wettability properties.  相似文献   

13.
We report structural, magnetic and electronic structure study of Mn doped TiO2 thin films grown using pulsed laser deposition method. The films were characterized using X-ray diffraction (XRD), dc magnetization, X-ray magnetic circular dichroism (XMCD) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements. XRD results indicate that films exhibit single phase nature with rutile structure and exclude the secondary phase related to Mn metal cluster or any oxide phase of Mn. Magnetization studies reveal that both the films (3% and 5% Mn doped TiO2) exhibit room temperature ferromagnetism and saturation magnetization increases with increase in concentration of Mn doping. The spectral features of XMCD at Mn L3,2 edge show that Mn2+ ions contribute to the ferromagnetism. NEXAFS spectra measured at O K edge show a strong hybridization between Mn, Ti 3d and O 2p orbitals. NEXAFS spectra measured at Mn and Ti L3,2 edge show that Mn exist in +2 valence state, whereas, Ti is in +4 state in Mn doped TiO2 films.  相似文献   

14.
We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.  相似文献   

15.
TiO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on optical, mechanical and structural properties of TiO2 thin films were studied. The results showed that with the increase of oxygen partial pressure, the optical transmittance gradually increased, the transmittance edge gradually shifted to short wavelength, and the corresponding refractive index decreased. The residual stresses of all samples were tensile, and the value increased as oxygen partial pressure increasing, which corresponded to the evolutions of the packing densities. The structures of TiO2 thin films all were amorphous because deposition particles did not possess enough energy to crystallize.  相似文献   

16.
In this work, structural investigations of TiO2 thin films doped with Tb at the amount of 0.4, 2 and 2.6 at.% have been outlined. Thin films were deposited on Si and SiO2 substrates by high energy reactive magnetron sputtering from mosaic Ti-Tb target. The influence of Tb dopant amount, post-annealing treatment and kind of applied substrate on microstructure has been discussed. Thin films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD analysis revealed the existence of crystalline TiO2 in anatase and rutile forms, depending on Tb amount in examined samples. AFM images show that as-deposited samples with 0.4 at.% concentration of terbium (anatase structure) have bigger crystallites as compared to 2% and 2.6 at.% of Tb (rutile structure). The additional annealing at 1070 K results in a mixed anatase (77%) and rutile (23%) structure.  相似文献   

17.
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO2 in a two-stage hybrid system had increased the proportion of surface states of TiO2 as Ti3+. The proportion of carbon atoms as alcohol/ether (COX) was decreased with increase the RF power and carbon atoms as carbonyl (CO) functionality had increased for low RF power treatment. The proportion of C(O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO2 surfaces which may be due to decrease in C(O)OX, increase in CO and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.  相似文献   

18.
Chemical vapor deposition (CVD) method was used in titania surface modification. Titania layers were obtained in sol-gel process and prepared as thin films on silicon wafers in dip-coating method. In order to define the influence of modification on titania surface properties (e.g., friction), various types of fluoroalkylsilanes were used. The effectiveness of the modification was monitored by FT-IR spectroscopy. The topography and frictional measurements were investigated with the use of atomic force microscopy (AFM).  相似文献   

19.
In this study, SnO2/TiO2 thin films are fabricated on SiO2/Si and Corning glass 1737 substrates using a R.F. magnetron sputtering process. The gas sensing properties of these films under an oxygen atmosphere with and without UV irradiation are carefully examined. The surface structure, morphology, optical transmission characteristics, and chemical compositions of the films are analyzed by atomic force microscopy, scanning electron microscopy and PL spectrometry. It is found that the oxygen sensitivity of the films deposited on Corning glass 1737 substrates is significantly lower than that of the films grown on SiO2/Si substrates. Therefore, the results suggest that SiO2/Si is an appropriate substrate material for oxygen gas sensors fabricated using thin SnO2/TiO2 films.  相似文献   

20.
A new inorganic sol-gel method was introduced in this paper to prepare TiO2 thin films. The autoclaved sol with needle-like anatase crystals was synthesized using titanyl sulfate (TiOSO4) and peroxide (H2O2) as starting materials. The transparent anatase TiO2 thin films were prepared on glass slides from the autoclaved sol by sol-gel dip-coating method. A wide range of techniques such as Fourier transform infrared transmission spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopes, X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrum were applied to characterize the autoclaved sol and TiO2 thin films. The results indicate that the autoclaved sol is flavescent, semitransparent and stable at room temperature. The anatase crystals of TiO2 films connect together to form net-like structure after calcined and the films become uniform with increasing heating temperature. The surface of the TiO2 films contain not only Ti and O elements, but also a small amount of N and Na elements diffused from substrates during heat treatment. The TiO2 films are transparent and their maximal light transmittances exceed 80% under visible light region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号