首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mong Hsu rubies have been heat treated in air at 1100, 1200, 1300, 1400, 1500 and 1600 °C. Their visual appearance and surface analysis (XPS) after each stage of heating have been monitored. The characteristic blue core regions of untreated ruby become slightly faded at 1100 °C and completely disappear at temperatures above 1500 °C. Trace amounts of Na, Ca, Si and Fe were found on the surface of untreated stones. Ti was first detected after heating to 1100 °C. Plots of detected surface concentrations of elements versus temperature show that the highest concentration of Fe occurred at 1300 °C while surface concentrations of Ti appeared to show two maxima near 1300 and 1500 °C. The results suggest that both the changing oxidation state of Fe2+ to Fe3+ and the diffusion of the Fe and Ti ions with temperature are responsible for the color changes through decreasing Fe2+ to Ti4+ charge transfer.  相似文献   

2.
X-ray photoelectron spectroscopy (XPS) has been used to investigate the changes in surface composition of three steels as they have undergone heating. The steels were mild steel, and two austenitic stainless steels, commonly designated 304 and 316 stainless steels. XPS measurements were made on the untreated samples, and then following heating for 30 min in vacuo and in a 1 × 10−6 Torr partial pressure of air, at temperatures between 100 °C and 600 °C.Mild steel behaves differently to the two stainless steels under the heating conditions. In mild steel the iron content of the surface increased, with oxygen and carbon decreasing, as a function of increasing temperature. The chemical state of the iron also changed from oxide at low temperatures, to metallic at temperatures above 450 °C.In both stainless steels the amount of iron present in the surface decreased with increasing temperature. The decrease in iron at the surface was accompanied by an increase in the amount of chromium at the steel surface. At temperatures above 450 °C the iron in both 304 and 316 stainless steels showed significant contributions from metallic iron, whilst the chromium present was in an oxide state. In 316 stainless steel heated to 600 °C there was some metallic chromium present in the surface layer.The surfaces heated in air showed the least variation in composition, with the major change being the loss of carbon from the surfaces following heating above 300 °C. There was also a minor increase in the concentration of chromium present on both the stainless steels heated under these conditions. There was also little change in the oxidation state of the iron and chromium present on the surface of these steels. There was some evidence of the thickening of the surface oxides as seen by the loss of the lower binding energy signal in the iron or chromium core level scans.The surfaces heated in vacuum showed a similar trend in the concentration of carbon on the surfaces, however the overall concentration of oxygen decreased throughout the heating of these steels. There were also significant changes in the oxidation state of the iron and chromium on these surfaces with significant amounts or iron and chromium present in the metallic form following heating up to 600 °C.It appears that the carbon contamination on the surfaces plays an important role in the fate of the surface oxide layer for all of the steels heated in a vacuum environment.  相似文献   

3.
Sphene/titania composite coatings were fabricated on titanium by a hybrid technique of microarc oxidation (MAO) and heat treatment. The high-applied voltages promote the formation of sphene in the MAO coatings after heat-treatment. Heat treatment could change the surface morphology of the MAO coatings such as roughness, macropores size and density and the thickness of the MAO coatings. Increasing the heat-treatment temperature decreased the atomic concentration ratios of Ti/Si and Ti/Ca of the MAO coatings. The chemical states of Ti4+, Ca2+, Si2+ and O2− were observed on all the coatings. Additionally, Ti2+ was detected in the MAO and heat-treated MAO coatings at 600 and 700 °C. The heat-treatment has obvious effect on the chemical states of Si, Ti and O elements due to the formation of sphene and oxidation of TiO phase of the MAO coating, but did not affect that of Ca. In the heat-treated MAO coatings at 800 °C (MAO-H8), the titanium surface shows a MAO top layer and oxidized interior layer. A concentration gradient in components in the MAO layer of the MAO-H8 coating was formed.  相似文献   

4.
SiC nanofiber with high crystallinity was synthesized through the pyrolysis of polycarbomethylsilane (PS) coated platelet carbon nanofiber (PCNF) over 700 °C and burning PCNF under the oxidative atmosphere. The as-prepared β-SiC nanofiber exhibited a diameter less than 100 nm and a medium surface area of 50 m2/g. The crystallinity of silicon carbide (SiC) nanofiber increases with increasing heat-treatment temperature, showing the formation of high crystalline SiC nanofiber at 1400 °C. PCNF can be used as a unique template to govern the shape, crystallinity and morphology of SiC.  相似文献   

5.
Carbon films were prepared on single crystal silicon substrates by heat-treatment of a polymer-poly(phenylcarbyne) at 800 °C in Ar atmosphere. The heat-treatment caused the change of the polymer into carbon film, which exhibited good field emission properties. Low turn-on emission field of 4.3 V/μm (at 0.1 μA/cm2) and high emission current density of 250 μA/cm2 (at 10 V/μm) were observed for the polymer-converted carbon films. This behavior was demonstrated to be mainly related to the microstructure of the carbon films, which consisted of fine carbon nanoparticles with high sp2 bonding. The carbon films, which can be deposited simply with large areas, are promising for practical applications in field emission display.  相似文献   

6.
(La0.6Eu0.4)0.67Ca0.33MnO3 has been prepared in the shape of nanoplates of single crystallites (an orthorhombic structure) through polymer templates. HRTEM images reveal 18, 25, and 30 nm thicknesses of plates after heating a precursor powder at 873, 1073, and 1273 K in air for 2 h. These values present average crystallite size determined from broadening of the X-ray diffraction peaks. A spin-glass-like surface (GS) overlayer (3-5 nm thickness) in such plates facilitates a ferromagnetic→ferrimagnetic reordering with markedly suppressed Curie point TC, i.e., as small as 90 K in a 873 K heated sample, from the parent value 268 K. The TC point increases to 103 K (or 120 K) when heating at higher temperature 1073 (or 1273 K), during which the core grows at the expense of the overlayer. The GS tailors as high coercivity Hc as 617 Oe in the zero field cooled (ZFC) sample that is decreased to 500 Oe in the field cooled (FC) sample in the surface spin-freezing along the field direction. The Hc-value (ZFC) that steps down successively to 252 Oe on the overlayer is thinned down by heating at 1273 K. Samples heated at 873, 1073, or 1273 K have regularly increased saturation magnetization 35.3, 63.9, or 69.6 emu/g in ZFC, while 43.7, 70.2, or 75.5 emu/g in FC measured at 10 K. The ferrimagnetic reordering are described based on the scenario of an antiferromagnetic exchange coupling between the Eu3+ and Mn3+ (or Mn4+) sublattices.  相似文献   

7.
Two nanocomposite Ti-Cx-Ny thin films, TiC0.95N0.60 and TiC2.35N0.68, as well as one pure TiN, were deposited at 500 °C on Si(1 0 0) substrate by reactive unbalanced dc-magnetron sputtering. Oxidation experiments of these films were carried out in air at fixed temperatures in a regime of 250-600 °C with an interval of 50 °C. As-deposited and oxidized films were characterized and analyzed using X-ray diffraction (XRD), microindentation, Newton's ring methods and atomic force microscopy (AFM). It was found that the starting oxidation temperature of nanocomposite Ti-Cx-Ny thin films was 300 °C irrespective of the carbon content; however their oxidation rate strongly depended on their carbon content. Higher carbon content caused more serious oxidation. After oxidation, the film hardness value remained up to the starting oxidation temperature, followed by fast decrease with increasing heating temperature. The residual compressive stress did not show a similar trend with the hardness. Its value was first increased with increase of heating temperature, and got its maximum at the starting oxidation temperature. A decrease in residual stress was followed when heating temperature was further increased. The film surface roughness value was slightly increased with heating temperature till the starting oxidation temperature, a great decrease in surface roughness was followed with further increase of heating temperature.  相似文献   

8.
A colloidal suspension of ZnS:Mn nanocrystals was prepared in sodium bis(2-ethylhexyl)suflosuccinate reverse micelles, and then modified by surfactants with phosphate or carboxyl groups. The photoluminescent intensity at 580 nm due to d-d transition of Mn2+ ions increases up to a factor of 6.3 and its quantum efficiency increases from 1.7% to 8.1% after modification. According to 31P nuclear magnetic resonance spectra, surfactants with phosphate groups adsorb on the surface of ZnS nanocrystal and 31P nucleus spins are relaxed rapidly by interaction with five unpaired 3d electrons of Mn2+, showing that phosphate groups are located in the vicinity of Mn2+. The excitation spectra for the emission due to phosphate or carboxyl groups are similar to those for the emission at 580 nm corresponding to the excitation of ZnS. Both excitation spectra shift in parallel with increasing the amount of surfactant to show the linear relationship. We, therefore, attribute the increase in quantum efficiency at 580 nm to additional energy transfer of ZnS→functional groups→Mn2+ as well as to the reduction of energy loss due to non-radiative transition by surface modification.  相似文献   

9.
Min Zeng 《Applied Surface Science》2011,257(15):6636-6643
Well-crystallized cubic phase BaTiO3 particles were prepared by heating the mixture of barium hydroxide aqueous solution and titania derived from the hydrolysis of titanium isopropoxide (TTIP) at 328 K, 348 K or 368 K for 24 h. The morphology and size of obtained particles depended on the reaction temperature and the Ba(OH)2/TTIP molar ratio. By the direct hydrolytic reaction of titanium tetraisopropoxide, the high surface area titania (TiO2) was obtained. The surface adsorption characteristics of the titania particles had been studied with different electric charges OH ions or H+ ions. The formation mechanism and kinetics of BaTiO3 were examined by measuring the concentration of [Ba2+] ions in the solution during the heating process. The experimental results showed that the heterogeneous nucleation of BaTiO3 occurred on the titania surface, according to the Avrami's equation.  相似文献   

10.
0.7BiFeO3-0.3PbTiO3 (BFPT7030) thin films were deposited on SiO2/Si substrates by sol-gel process. The influence of heating rate on the crystalline properties of BFPT7030 thin films were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns of the films showed that a pure perovskite phase exists in BFPT7030 films annealed by rapid thermal annealing (RTA) technique. SEM and AFM observations demonstrated that the BFPT7030 films annealed by RTA at 700 °C for 90 s with the heating rate of 1 °C s−1 could show a dense, crack-free surface morphology, and the films’ grains grow better than those of the films annealed by RTA at the same temperature with other heating rates. XPS results of the films indicated that the ratio of Fe3+:Fe2+ is about 21:10 and 9:5 for the films annealed by RTA at 700 °C for 90 s with the heating rate of 1 and 20 °C s−1, respectively. That means the higher the heating rate, the higher the concentration of Fe2+ in the BFPT7030 thin films.  相似文献   

11.
Ce3+-doped silica was synthesized by sol-gel technique and was further decorated with S2− and Cl anions through chemical exchange in controlled ambient at elevated temperature. The structure and optical property of samples were examined by X-ray diffraction spectrum, XPS pattern, reflection pattern, and photoluminescence patterns. There is a broad luminescence band at 445 nm under the excitation at 320 nm in the Ce3+-doped silica heat-treated in air at 1000 °C. The heat-treatment of the sample in vacuum at 800 °C can increase the intensity of luminescence but have no effect on the wavelength of luminescence. The decoration of S2− and Cl anions cannot only increase the luminescent intensity but also shift the luminescent wavelength to shorter wavelength.  相似文献   

12.
Benzoic acid (BA) can disperse spontaneously onto the surface of H-titanate nanotubes (HTNTs) in a sub-monolayer state by heating mechanical mixtures method. The structure of BA-HTNTs system has been characterized by X-ray diffraction (XRD), thermogravimetric (TG), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) in detail. The results show that the H-bond association structure among BA molecules collapses and the carboxyl groups react with the surface hydroxyl group of HTNTs to form a salt-like structure on the surface after dispersion. The monolayer dispersion capacity determined by XRD is ca. 0.305 g BA g−1 HTNTs, which is lower than the utmost monolayer dispersion capacity 0.550 g BA g−1 HTNTs calculated according to a model that the benzene ring in BA molecules is perpendicular to the surface of HTNTs. At the same time, the dispersion capacity is also measurement by the fit of C 1s XPS peak at various BA loadings at first time.  相似文献   

13.
The initial stage of the thermal nitridation on Si (1 0 0)-2 × 1 surface with the low-energy nitrogen ion (200 eV) implantation was studied by photoemission spectroscopy (PES). The formation of nitride was shown the different characteristics depending on the annealing temperature. The disordered surface at room temperature was changed to 2 × 1 periodicity with the low-energy electron diffraction (LEED) as increasing the nitridation temperature. By decomposition of Si 2p spectrum, we can identify the three subnitrides (Si1+, Si2+, and Si3+). By changing the take-off angle of the Si 2p, we can increase surface sensitivity and estimate that Si1+, Si2+ and Si3+ are the interface states.  相似文献   

14.
X-ray photoelectron spectroscopy was applied to study the hydroxylation of α-Al2O3 (0 0 0 1) surfaces and the stability of surface OH groups. The evolution of interfacial chemistry of the α-Al2O3 (0 0 0 1) surfaces and metal/α-Al2O3 (0 0 0 1) interfaces are well illustrated via modifications of the surface O1s spectra. Clean hydroxylated surfaces are obtained through water- and oxygen plasma treatment at room temperature. The surface OH groups of the hydroxylated surface are very sensitive to electron beam illumination, Ar+ sputtering, UHV heating, and adsorption of reactive metals. The transformation of a hydroxylated surface to an Al-terminated surface occurs by high temperature annealing or Al deposition.  相似文献   

15.
N-type 4H-SiC (0 0 0 1) surfaces were cleaned by low temperature hydrogen plasma in electronic cyclotron resonance (ECR) microware plasma system. The effects of the hydrogen plasma treatment (HPT) on the structure, chemical and electronic properties of surfaces were characterized by in situ reflection high energy electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS). The RHEED results indicate that the structures of the films are strongly dependent on the treatment temperature and time. Significant improvements in quality of 4H-SiC films can be obtained with the temperature ranging from 200 °C to 700 °C for an appropriate treatment period. The XPS results show that the surface oxygen is greatly reduced and the carbon contamination is completely removed from the 4H-SiC surfaces. The hydrogenated SiC surfaces exhibit an unprecedented stability against oxidation in the air. The surface Fermi level moves toward the conduction band in 4H-SiC after the treatment indicating an unpinning Fermi level with the density of surfaces states as low as 8.09 × 1010 cm−2 eV−1.  相似文献   

16.
A number of activated carbons were prepared from a locally available by-product, corncobs, under currently established activation schemes. Obtained carbons were characterized by N2 adsorption at 77 K and the isotherms were analyzed by BET and αs methods. Steam-activation at 900 °C produced a microporous carbon having the highest Sα of 788 m2 g−1, whereas activation with air at 350 °C produced a carbon of Sα = 321 m2/g and possess wider pores. KOH impregnation with char in ratio 1:1 (w/w) and impregnated in the same ratio with the raw material prior to pyrolysis at 700 °C for 1 h, gave CK700, K700 respectively. An additional sample was obtained by oxidizing part of K700 with conc. HNO3. All three KOH carbons show pore structures much close to char itself which may be due to potassium salt left in pores and is not easily leached with repeated water washings. In addition, KOH is more effective on the precursor itself than on its char of already developed porosity. FT-IR spectra show an increase in oxygen functionalties on the carbon surface as a result of activation process and the bands become stronger in the spectra of the acid-treated sample. The oxidized carbon sample showed relatively higher uptake of Pb2+ and MB and its surface chemistry plays the key role in their adsorption, while sharp decrease was observed in the uptake of phenol and mono-nitrophenols from aqueous solutions. An SEM study showed that air activation produce obvious voids reflecting its erosive effect on the external carbon surface.  相似文献   

17.
We have investigated the Ce 4f electronic states in the Ce/Pd(1 1 1) and Ce-oxide/Pd(1 1 1) systems, using resonant photoemission (Ce 4d → 4f transitions), and XPS to understand Pd-Ce interactions in ultra thin layers of cerium and ceria deposited on Pd(1 1 1). Cerium deposited on Pd(1 1 1) at room temperature forms surface Ce-Pd alloys with Ce rich character, while a Pd rich Ce-Pd alloy is formed by heating to 700 °C. A modification of the chemical state of Ce can also be seen after oxygen exposure. RPES provides evidence that Ce-oxide layers deposited on Pd(1 1 1) have a CeO2 (Ce4+) character, however a net contribution of the Ce3+ states is also revealed. The Ce3+ states have surface character and are accompanied by oxygen vacancies. Heating to 600 °C causes Ce-oxide reduction. A significant shift of Pd 4d-derived states, induced by Pd 4d and Ce 4f hybridization, was observed. The resonant features in the valence band corresponding to Ce4+, Ce3+ and Ce0 states have been investigated for various Pd−Ce(CeOx) coverages.  相似文献   

18.
Z. Li 《Surface science》2007,601(5):1351-1357
The adsorption of acetic acid is studied as a function of gold content by temperature-programmed desorption and reflection-absorption infrared spectroscopy on Au/Pd(1 1 1) alloys formed by depositing 5 ML of gold onto a Pd(1 1 1) surface and heating to various temperatures. For mole fractions of gold greater than ∼0.5, acetic acid adsorbs molecularly and desorbs intact with an activation energy of ∼52 kJ/mol. This acetic acid is present as catemers, where the nature of the catemer is found to depend on gold concentration. When the relative gold concentration is less than ∼0.33, adsorption of acetic acid at 80 K and heating to ∼207 K forms η1-acetate species on the surface. On further heating, these can either thermally decompose to eventually evolve hydrogen, water and oxides of carbon, or form η2-acetate species, where the coverage of reactively formed η2-acetate species increases with decreasing gold concentration in the near surface region.  相似文献   

19.
Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m2 g−1, Vmi of 0.39 cm3 g−1 and a iodine retention capacity of 429.3 mg g−1): carbon C (gasification with CO2 at 850 °C during 1 h), with SBET of 523 m2 g−1, Vmi of 0.33 cm3 g−1 and a iodine retention capacity of 402.5 mg g−1, and carbon D (gasification with CO2 at 900 °C during 1 h), whose SBET is 672 m2 g−1, Vmi is 0.28 cm3 g−1 and has a iodine retention capacity of 345.2 mg g−1.  相似文献   

20.
Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl2. The influence of process variables such as the carbonisation temperature and the ZnCl2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N2 at −196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m2 g−1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号