首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preparation of transparent and conducting indium doped CdO thin films by spray pyrolysis on glass substrate is reported for various concentration of indium (2-8 wt%) in the spray solution. The electrical, optical and structural properties of indium doped CdO films were investigated using different techniques such as Hall measurement, optical transmission, X-ray diffraction and scanning electron microscope. X-ray analysis shows that the undoped CdO films are preferentially orientated along (2 0 0) crystallographic direction. Increase of indium doping concentration increases the films packing density and reorient the crystallites along (1 1 1) plane. A minimum resistivity of 4.843×10−4 Ω cm and carrier concentration of 3.73×1020 cm−3 with high transmittance in the range 300-1100 nm were achieved for 6 wt% indium doping. The band gap value increases with doping concentration and reaches a maximum of 2.72 eV for 6 wt% indium doping from 2.36 eV of that of undoped film. The minimum resistivity achieved in the present study is found to be the lowest among the reported values for In-doped CdO films prepared by spray pyrolysis method.  相似文献   

2.
The crystal structure, band gap energy and bowing parameter of In-rich InxAl1−xN (0.7 < x < 1.0) films grown by magnetron sputtering were investigated. Band gap energies of InxAl1−xN films were obtained from absorption spectra. Band gap tailing due to compositional fluctuation in the films was observed. The band gap of the as-grown InN measured by optical absorption method is 1.34 eV, which is larger than the reported 0.7 eV for pure InN prepared by molecular beam epitaxy (MBE) method. This could be explained by the Burstein-Moss effect under carrier concentration of 1020 cm−3 of our sputtered films. The bowing parameter of 3.68 eV is obtained for our InxAl1−xN film which is consistent with the previous experimental reports and theoretical calculations.  相似文献   

3.
Highly conducting and transparent aluminum-doped CdO thin films were deposited on quartz by ablating the sintered target of CdO containing 2 wt% of aluminum with a KrF excimer laser (λ = 248 nm and pulsed duration of 20 ns). The effect of oxygen partial pressure on structural, electrical, and optical properties was studied. It is observed that the (2 0 0) plane is highly preferred for the films grown under high oxygen pressure. The conductivity, carrier concentration and mobility of the films decrease with increase in the oxygen pressure after attaining maximum. Low resistivity (2.27 × 10−5 Ω cm), and high mobility (79 cm2 V−1 s−1) is observed for the film grown under oxygen pressure of 1.0 × 10−3 mbar. The optical band gap is found varying between 2.68 and 2.90 eV for various oxygen pressure.  相似文献   

4.
In this study, highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films have been deposited on glass substrates by pulsed laser deposition (PLD) technique. The effects of substrate temperature and post-deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The properties of the films have been characterized through Hall effect, double beam spectrophotometer and X-ray diffraction. The experimental results show that the electrical resistivity of film deposited at 200 °C is 8.12 × 10−4 Ω cm, and can be further decreased to 4.74 × 10−4 Ω cm with post-deposition annealing at 400 °C for 2 h under 3 × 10−3 Pa. In the meantime, its band gap energy can be increased to 3.90 eV from 3.83 eV. The annealing process leads to improvement of (0 0 2) orientation, wider band gap, increased carrier concentration and blue-shift of absorption edge in the transmission spectra of ZMO:Ga thin films.  相似文献   

5.
Formation of cadmium hydroxide at room temperature onto glass substrates from an aqueous alkaline cadmium nitrate solution using a simple soft chemical method and its conversion to cadmium oxide (CdO) by thermal annealing treatment has been studied in this paper. The as-deposited film was given thermal annealing treatment in oxygen atmosphere at 450 °C for 2 h for conversion into cadmium oxide. The structural, surface morphological and optical studies were performed for as-deposited and the annealed films. The structural analyses revealed that as-deposited films consists of mixture of Cd(OH)2 and CdO, while annealed films exhibited crystalline CdO. From surface morphological studies, conversion of clusters to grains after annealing was observed. The band gap energy was changed from 3.21 to 2.58 eV after annealing treatment. The determination of elementals on surface composition of the core-shell nanoparticles of annealed films was carried out using X-ray photoelectron spectroscopy (XPS).  相似文献   

6.
The physical, chemical, electrical and optical properties of as-deposited and annealed CdIn2O4 thin films deposited using spray pyrolysis technique at different nozzle-to-substrate distances are reported. These films are characterized by X-ray diffraction, XPS, SEM, PL, Hall effect measurement techniques and optical absorption studies. The average film thickness lies within 600-800 nm range. The X-ray diffraction study shows that films exhibit cubic structure with orientation along (3 1 1) plane. The XPS study reveals that CdIn2O4 films are oxygen deficient. Room temperature PL indicates the presence of green shift with oxygen vacancies. The typical films show very smooth morphology. The best films deposited with optimum nozzle-to-substrate distance (NSD) of 30 cm, has minimum resistivity of 1.3 × 10−3 Ω cm and 2.6 × 10−4 Ω−1 figure of merit. The band gap energy varies from 3.04 to 3.2 eV with change in NSD for annealed films. The effect of NSD as well as the annealing treatment resulted into the improvement of the structural, electrical and optical properties of the studied CdIn2O4 thin films.  相似文献   

7.
Transparent conducting ZnMgO:Ga films were deposited on flexible PET substrates by pulsed laser deposition (PLD). Effects of deposition pressure and time on the structural, electrical and optical properties of ZnMgO:Ga films were investigated. The films showed a low resistivity about 7.68 × 10−4 Ω cm when deposited at the pressure of 0.03 Pa for 40 min. All the films exhibited a high transmittance over 80% in the visible and near-ultraviolet region. The band gap of as-grown films was about 3.50 eV.  相似文献   

8.
This study investigated the effect of deposition temperature on the morphological, optical, electrical and opto-electrical properties of CdO:Ga films prepared by a cost effective spray pyrolysis deposition method. The substrate temperature was varied from 275 to 375 °C, in steps of 25 °C. The XRD patterns reveal that films are polycrystalline with cubic structure and are highly textured along (2 0 0) preferential orientation. The crystallinity and crystallite size increases with deposition temperature. The SEM images confirmed these results and showed larger grains and more crystallization for the higher deposition temperature. The electrical studies show degenerate, n-type semiconductor nature with minimum resistivity of 1.93 × 10−4 Ω cm. Temperature dependence of electrical conductivity shows a semiconducting behavior with a spectrum of activation energy. The electrical conductivity of the film dependence of temperature shows the thermally activated band conduction mechanism. The optical gap varies from 2.54 to 2.74 eV. The highest figure of merit observed in the present study is 9.58 × 10−3 Ω−1 and shows improvement than our previous reports. The blue shift of absorption edge (or bandgap widening BGW) can be described by the Moss-Burstein (M-B) effect in which the optical absorption edge of a degenerate n-type semiconductor is shifted towards higher energy.  相似文献   

9.
Iodine doped ZnSe thin films were prepared onto uncoated and aluminium (Al) coated glass substrates using vacuum evaporation technique under a vacuum of 3 × 10−5 Torr. The composition, structural, optical and electrical properties of the deposited films were analyzed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and study of I-V characteristics, respectively. In the RBS analysis, the composition of the deposited film is calculated as ZnSeI0.003. The X-ray diffractograms reveals the cubic structure of the film oriented along (1 1 1) direction. The structural parameters such as crystallite size, strain and dislocation density values are calculated as 32.98 nm, 1.193 × 10−3 lin−2 m−4 and 9.55 × 1014 lin/m2, respectively. Spectroscopic ellipsometric (SE) measurements were also presented for the prepared iodine doped ZnSe thin films. The optical band gap value of the deposited films was calculated as 2.681 eV by using the optical transmittance measurements and the results are discussed. In the electrical studies, the deposited films exhibit the VCNR conduction mechanism. The iodine doped ZnSe films show the non-linear I-V characteristics and switching phenomena.  相似文献   

10.
A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (∼450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6-1 S cm−1 and hole concentration ∼2×1019 cm−3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ∼0.11 eV in 300-470 K and ∼0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.  相似文献   

11.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

12.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

13.
ZnO films were prepared using radio frequency magnetron sputtering on Si(1 1 1) substrates that were sputter-etched for different times ranging from 10 to 30 min. As the sputter-etching time of the substrate increases, both the size of ZnO grains and the root-mean-square (RMS) roughness decrease while the thickness of the ZnO films shows no obvious change. Meanwhile, the crystallinity and c-axis orientation are improved by increasing the sputter-etching time of the substrate. The major peaks at 99 and 438 cm−1 are observed in Raman spectra of all prepared films and are identified as E2(low) and E2(high) modes, respectively. The Raman peak at 583 cm−1 appears only in the films whose substrates were sputter-etched for 20 min and is assigned to E1(LO) mode. Typical ZnO infrared vibration peak located at 410 cm−1 is found in all FTIR spectra and is attributed to E1(TO) phonon mode. The shoulder at about 382 cm−1 appearing in the films whose substrates were sputter-etched for shorter time (10-20 min) originates from A1(TO) phonon mode. The results of photoluminescence (PL) spectra reveal that the optical band gap (Eg) of the ZnO films increases from 3.10 eV to 3.23 eV with the increase of the sputter-etching time of the substrate.  相似文献   

14.
The influence of the gadolinium doping on the structural features and opto-electrical properties of ZnO:Al (ZAO) films deposited by radio frequency (RF) magnetron sputtering method onto glass substrates was investigated. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [0 0 2] direction. The Gd doped ZAO film with a thickness of 140 nm showed a high visible region transmittance of 90%. The optical band gap was found to be 3.38 eV for pure ZnO film and 3.58 eV for ZAO films while a drop in optical band gap of ZAO film was observed by Gd doping. The lowest resistivities of 8.4 × 10−3 and 10.6 × 10−3 Ω cm were observed for Gd doped and undoped ZAO films, respectively, which were deposited at room temperature and annealed at 150 °C.  相似文献   

15.
In this work, we report the formation of CuInS2 thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In2S3) at 300 and 350 °C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS2 (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 × 10−8 to 3 Ω−1 cm−1 depending on the thickness of the CuS film. CIS films showed p-type conductivity.  相似文献   

16.
Aluminium-doped zinc oxide (ZnO:Al) films were prepared by magnetron sputtering at different radio-frequency powers (Prf) of 50, 100, 150 and 200 W. The properties of the films were characterised by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman microscopy, and spectrophotometry with the emphasis on the evolution of compositional, surface-morphological, optical, electrical and microstructural properties. XPS spectra showed that within the detection limit the films are chemically identical to near-stoichiometric ZnO. AFM revealed that root-mean-square roughness of the films has almost linear increase with increasing Prf. Optical band gap Egopt of the films increases from 3.31 to 3.51 eV when Prf increases from 50 to 200 W. A widening Egopt of the ZnO:Al films compared to the band gap (∼3.29 eV) of undoped ZnO films is attributed to a net result of the competition between the Burstein-Moss effect and many-body effects. An electron concentration in the films was calculated in the range of 3.73 × 1019 to 2.12 × 1020 cm−3. Raman spectroscopy analysis indicated that well-identified peaks appear at around 439 cm−1 for all samples, corresponding to the band characteristics of the wurtzite phase. Raman peaks in the range 573-579 cm−1 are also observed, corresponding to the A1 (LO) mode of ZnO.  相似文献   

17.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

18.
Zinc selenide nanocrystalline thin films are grown onto amorphous glass substrate from an aqueous alkaline medium, using chemical bath deposition (CBD) method. The ZnSe thin films are annealed in air for 4 h at various temperatures and characterized by structural, morphological, optical and electrical properties. The as-deposited ZnSe film grew with nanocrystalline cubic phase alongwith some amorphous phase present in it. After annealing metastable nanocrystalline cubic phase was transformed into stable polycrystalline hexagonal phase with partial conversion of ZnSe into ZnO. The optical band gap, Eg, of as-deposited film is 2.85 eV and electrical resistivity of the order of 106-107 Ω cm. Depending upon annealing temperature, decrease up to 0.15 eV and 102 Ω cm were observed in the optical band gap, Eg, and electrical resistivity, respectively.  相似文献   

19.
The deposition and characterization of Se films doped with Pb underpotentially deposited (UPD) ad-atoms was studied in this work. The employed experimental techniques were cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy, UV-vis spectroscopy and atomic force microscopy. The initial deposition of Se film by chronoamperometry yielded a thin film composed of approximately 700 layers. The Pb UPD on Se was achieved by chronoamperometry in a potential value previously determined in voltammetric experiments. This deposition yielded a deposition charge of approximately 7.5% of the total one. The film resistance altered from 320 Ω cm−2 for Se to 65 Ω cm−2 for the Se/Pb one. Flat band potential values and number of acceptors and donors were also calculated for both films and the values obtained were +0.95 and −0.51 V for Se and Se/Pb, respectively. The Se coating presented 1.2 × 1017 cm−3 acceptors while the Se/Pb one presented 3.2 × 1017 cm−3 donors. The band gap values for both films were 2.4 eV and 1.9 eV, correspondingly.  相似文献   

20.
Transparent conducting SnO2:Cd thin films were prepared by RF reactive magnetron co-sputtering on glass slides at a substrate temperature of 500 °C using CdO as cadmium source. The films were deposited under a mixed argon/oxygen atmosphere. The structural, optical and electrical properties were analyzed as a function of the Cd amount in the target. The X-ray diffraction shows that polycrystalline films were grown with both the tetragonal and orthorhombic phases of SnO2. The obtained films have high transmittance and conductivity. The figure of merit of SnO2:Cd films are in the order of 10−3 Ω−1, which suggests that these films can be considered as candidates for transparent electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号