首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

2.
Sm-doped Ceria (SDC) electrolyte film was successfully fabricated on anode substrate of NiO-SDC by screen-printing. Some technical parameters for fabrication were investigated and optimized, including printing times, ink composition and sintering temperature. Scanning electron microscope (SEM) measurement was done to check the microstructures of SDC film and single cell. The parameters greatly affected the quality of SDC film and cell performance. The single cell with the optimum parameters exhibited an OCV of 0.82 V and a power density of 0.5 W/cm2 at 600 °C.  相似文献   

3.
Undoped and Fe doped CdS nanocrystals with Fe content of 2–5 at% of average crystallite size 1.2–2 nm have been obtained using chemical co-precipitation method with 2-mercaptoethonal as capping agent at 80 °C. X-ray diffraction (XRD) results showed that the undoped CdS nanocrystals were in mixed phase of cubic and hexagonal, where as the doped CdS nanocrystals were in hexagonal phase. Room-temperature ferromagnetism has been observed in Fe-doped CdS nanocrystals. Magnetic studies indicated diamagnetism in undoped, ferromagnetism in lightly doped (2 and 3 at%) and paramagnetism in samples of higher Fe content (4 and 5 at%). The substitutional incorporation of Fe3+ ion in Cd2+ sites was reflected in structural and electron paramagnetic resonance (EPR) measurements. Isolated as well as interacting Fe3+ ions are observed in EPR.  相似文献   

4.
Present work is a study of temperature dependent electron paramagnetic resonance spectra of Ce and Gd doped nickel ferrite nanoparticles. The samples, synthesised by chemical route were characterised by X-ray diffractometer, electron paramagnetic resonance spectroscopy (EPR) and vibrating sample magnetometer (VSM). The average crystallite size of pure nickel ferrite is ∼64 nm and for Gd and Ce doped samples it is ∼20 nm and ∼14 nm, respectively. The EPR spectra were recorded from 120 to 300 K. Doping with Gd and Ce reduces the line width and g-value in comparison to that of pure nickel ferrite. Ce doped samples have the lowest values of both these parameters at room temperature. This indicates that Ce doped samples show lowest loss and is suitable for high frequency devices. EPR spin numbers are reduced while the spin relaxation time is increased after doping with rare earth ions. Gd doped samples have higher values of relaxation time and lower spin numbers in comparison to that of Ce doped samples. VSM results show that the magnetisation and coercivity are reduced after doping with both Ce and Gd rare earth ions.  相似文献   

5.
ZnO films were prepared on (1 1 1) YSZ and (0 0 0 1) sapphire by pulsed laser deposition method. Effect of lattice mismatch on the carrier transport properties of ZnO epitaxial thin films was investigated. The carrier mobility of the ZnO films on YSZ was larger than that of ZnO/sapphire due to smaller lattice mismatch when the thickness was below 150 nm. The effect of electrically degenerated layer on the carrier transport property increased with decreasing the film thickness of ZnO film. The carrier density and electron mobility of 20 nm-thick-ZnO film on either substrate were regardless of the temperature. We concluded that the dominant carrier scattering mechanism in ZnO ultra thin films is double Schottky barriers at the grain boundary and that their height depends on the carrier concentration.  相似文献   

6.
Cobalt doped zinc oxide (ZnO:Co) thin films were deposited on glass substrates by ultrasonic spray technique decomposition of Zinc acetate dihydrate and cobalt acetate tetrahydrate in an ethanol solution with film thickness. All films are polycrystalline with a hexagonal wurtzite-type structure with a preferential orientation according to the direction (0 0 2), with the maximum crystallite size was found of 59.42 nm at 569 nm. The average transmittance of all films is about 65–95% measured by UV–vis analyzer. The band gap energy increased from 3.08 to 3.32 eV with increasing the film thickness from 192 to 569 nm. The increase of the electrical conductivity with increases in the film thickness to maximum value of 9.27 (Ω cm)−1 can be explained by the increase in carrier concentration and displacement of the electrons of the films. The correlation between the band gap and crystal structure suggests that the band gap energy of Co doped ZnO is influenced by the crystallite size and the mean strain.  相似文献   

7.
Copper diffusion barrier properties of phosphorous doped Ru film are studied. Phosphorous out-diffusion to Ru from underneath phosphosilicate glass (PSG) layer results in P doped Ru film. The doped Ru film improves copper barrier properties and has excellent thermal stability. XRD graph indicates that there is no copper silicide and ruthenium silicide formations after annealing at 550 °C for 30 min in vacuum. This result is consistant with AES depth profiles which show no Cu, Ru, O and Si inter-diffusion. The phosphorous doped Ru barrier also blocks oxygen's diffusion to copper from the PSG layer. The phosphorous doped Ru film could be an alternative Cu diffusion barrier for advanced Cu interconnects.  相似文献   

8.
Perovskite manganite La0.9Ba0.1MnO3(LBMO) films were deposited on (0 0 1)-oriented single crystal yttria-stabilized zirconia (YSZ) substrate by 90° off-axis radio frequency magnetron sputtering. The film thickness ranged from 10 nm to 100 nm. Grazing incidence X-ray diffraction technique and high resolution X-ray diffraction were applied to characterize the structure of LBMO films. The LBMO film mainly consisted of (0 0 1)-orientated grain as well as weakly textured (1 1 0)-orientated grain. The results indicated that an amorphous layer with thickness of about 4 nm was formed at the LBMO/YSZ interface. The strain in LBMO film was small and averaged to be about -0.14%. The strain in the film was not lattice mismatch-induced strain but residual strain due to the difference in thermal expansion coefficient between film and substrate.  相似文献   

9.
Mesophase silica thin film doped with in-situ formed ternary Eu complex was synthesized by adding ligands (DBM=dibenzoylmethane, phen=1,10-phenanthroline), Eu ions (EuCl3·6H2O), and Pluronic P123 triblock copolymer into hydrolyzed tetramethoxy-silane (TMOS). The structure of this inorganic/organic film was characterized as a 2d-hexagonal structure by X-ray diffraction (XRD) and TEM analysis. The excitation spectra (λem=612 nm) and emission spectra (λex=325 nm) indicated that the ternary complex, Eu-DBM-phen, was formed in-situ during the formation of the film. The mesophase silica thin film doped with the in-situ formed Eu complex showed a higher quantum efficiency compared to a pure Eu(DBM)3phen complex and a mesophase silica thin film doped with in-situ formed binary Eu-phen complex.  相似文献   

10.
Ga doped ZnO (GZO) thin films were deposited on glass substrates at room temperature by continuous composition spread (CCS) method. CCS is thin films growth method of various GaxZn1−xO(GZO) thin film compositions on a substrate, and evaluating critical properties as a function position, which is directly related to material composition. Various compositions of Ga doped ZnO deposited at room temperature were explored to find excellent electrical and optical properties. Optimized GZO thin films with a low resistivity of 1.46 × 10−3 Ω cm and an average transmittance above 90% in the 550 nm wavelength region were able to be formed at an Ar pressure of 2.66 Pa and a room temperature. Also, optimized composition of the GZO thin film which had the lowest resistivity and high transmittance was found at 0.8 wt.% Ga2O3 doped in ZnO.  相似文献   

11.
Heavily doped Zn1−xMnxO (x = 0.3) films were prepared by polymeric precursor method onto glass substrates and their structural, morphological, optical and magnetic properties carefully studied. Undoped ZnO films were also prepared for the purpose of comparison. The polymeric precursor method consists in preparing a coating solution from the Pechini process followed by a three-step thermal treatment of the as deposited films at temperatures up to 550 °C for 30 min. X-ray diffraction (XRD) analysis reveals the typical hexagonal wurtzite structure of the undoped ZnO film. The addition of Mn ions leads to a dramatic reduction of the crystalline quality of film although no evidence of affectation by secondary phases is found. The affectation of the ZnO structure may be due to the formation of Mn clusters and generation of defects such as vacancies and interstitials. Here, the solubility limit of the Mn ions in ZnO should play an important role and it is discussed in the framework of ionic radius and valence states. The scanning electron microscopy (SEM) analysis shows that the surface of the doped sample was affected by the presence of cracks due, probably, to the expansion of the lattice constant of Zn0.7Mn0.3O caused by the Mn incorporation in the ZnO lattice. The existence of cluster-type structures on the surface is corroborated by atomic force microscopy (AFM). The EDX analysis, carried out on some areas in the film, yielded Mn/Zn ratios of about 0.3, which points out to an effective Mn incorporation in the film. On the other hand, the absorption edge of the doped films is red shifted to 2.9 eV (3.24 eV for undoped ZnO film) and the absorption edge is less sharp due, probably, to amorphous states appearing in the band gap. No evidence of dilute magnetic semiconductor mean-field ferromagnetic behavior is observed. The temperature dependence of the magnetization follows a Curie law suggesting pure paramagnetic behavior. The very small s-shape behavior of M versus H (without hysteresis) observed at room temperature on selected areas would stem from Mn clusters which are easily formed in transition metal doped ZnO.  相似文献   

12.
The influence of the gadolinium doping on the structural features and opto-electrical properties of ZnO:Al (ZAO) films deposited by radio frequency (RF) magnetron sputtering method onto glass substrates was investigated. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [0 0 2] direction. The Gd doped ZAO film with a thickness of 140 nm showed a high visible region transmittance of 90%. The optical band gap was found to be 3.38 eV for pure ZnO film and 3.58 eV for ZAO films while a drop in optical band gap of ZAO film was observed by Gd doping. The lowest resistivities of 8.4 × 10−3 and 10.6 × 10−3 Ω cm were observed for Gd doped and undoped ZAO films, respectively, which were deposited at room temperature and annealed at 150 °C.  相似文献   

13.
Ag-N doped ZnO film was synthesized by ion beam assisted deposition and its electrical properties and annealing property were investigated. The films remained p-type even after annealing at 400 °C in air for 10 min. While the annealing temperature went up to 500 °C, the conduction type of these films shifted from p-type to n-type. The p-type ZnO film revealed low resistivity (0.0016 Ω cm), low Hall mobility (0.65 cm2 V−1 s−1) and high carrier concentration (5.8 × 1020 cm−3). ZnO p-n homojunction consisting of a p-type layer (Ag-N doped ZnO film) and an n-type layer (In-doped ZnO film) had been fabricated by ion beam assisted deposition. With electrical measurement, its current-voltage curve had a typical rectifying characteristic with current rectification ratio of 25 at bias ±5 V and a reverse current of 0.01 mA at −5 V. The depletion width was estimated 3.8 nm by using p-n junction equation.  相似文献   

14.
The nonlinear refraction and photoinduced birefringence of chlorophosphonazo I (CPA I ) doped PVA thin films were investigated. The single-beam Z-scan measurement showed that CPA I doped PVA thin film possessed a large value of nonlinear refractive index (n2=1.82×10−12 cm2/W) under a pulse 532 nm excitation, and the mechanism accounting for the process of nonlinear refraction was discussed in term of resonant electronic effect. Moreover, fast and stable molecular reorientation was observed when investigating the photoinduced birefringence of CPA I doped PVA thin film with a CW 532 nm laser as pump light and a CW 650 nm laser as probe light.  相似文献   

15.
Anode substrate has a great effect on screen-printing fabrication of yttria-stabilized zirconia (YSZ) electrolyte film and cell performance. In this work, NiO+YSZ anode substrate was prepared by a conventional ceramic sintering method, on which dense YSZ electrolyte film was successfully fabricated by screen-printing method. Microstructure of the anode substrate and cell performance were investigated. The optimal amount of addition of starch to the anode substrate was 20 wt%. The optimal temperature for pre-sintering of NiO powder was 800 °C. A single cell with the NiO powder pre-sintered at 800 °C exhibited the highest power density of 0.95 W cm−2 at 700 °C.  相似文献   

16.
By using the radio frequency-magnetron sputtering (RF-MS) method, both pure ZnO and boron doped ZnO (ZnO:B) thin films were deposited on glass substrates at ambient temperature and then annealed at 450 °C for 2 h in air. It is found that both ZnO and ZnO:B thin films have wurtzite structure of ZnO with (0 0 2) preferred orientation and high average optical transmission (≥80%). Compared with the resistivity of 6.3 × 102 Ω cm for ZnO film, both as-deposited and annealed ZnO:B films exhibit much lower resistivity of 9.2 × 10−3 Ω cm and 7.5 × 10−3 Ω cm, respectively, due to increase in the carrier concentration. Furthermore, the optical band gaps of 3.38 eV and 3.42 eV for as-deposited and annealed ZnO:B films are broader than that of 3.35 eV for ZnO film. The first-principles calculations show that in ZnO:B thin films not only the band gap becomes narrower but also the Fermi level shifts up into the conduction band with respect to the pure ZnO film. These are consistent with their lower resistivities and suggest that in the process of annealing some substituted B in the lattice change into interstitial B because of its smaller ion radius and this transformation widens the optical band gap of ZnO:B thin film.  相似文献   

17.
The temperature dependence of the resistivity for composite samples of (1−x)La0.67Ba0.33MnO3+xYSZ(LBMO/YSZ) with different YSZ doping level of x has been investigated in a magnetic field range of 0-7000 Oe, where the YSZ represents yttria-stabilized zirconia (8 mol% Y2O3+92 mol% ZrO2). With increasing YSZ doping level, the range of 0-10%, the metal-insulator transition temperature (TP) decreases. However, the resistivity, specially the low temperature resistivity, increases. Results also show that the YSZ doping level has an important effect on a low field magnetoresistance (LFMR). In the magnetic field of 7000 Oe, a room temperature magnetoresistance value of 20% was observed for the composite with a YSZ doping level of 2%, which is encouraging for potential application of CMR materials at room temperature and low field.  相似文献   

18.
Immobilized activated carbon doped TiO2 thin films were prepared by sol–gel dip coating method by using Titanium IV isopropoxide as a precursor. Aim of our work is to synthesize and investigate the structural, surface morphology and optical properties of the synthesized thin film. X-ray diffraction pattern reveals that the crystallinity of the film increases with increase in temperature. Also, the structural parameters such as particle size, microstrain and dislocation density have been calculated. The formation of nanosphere of diameter ranging from 300 nm to 500 nm has been confirmed by Scanning electron microscope. Photocatalytic active large optical band gap at 3.75 eV was found by using UV–visible sspectrum.  相似文献   

19.
We have deposited zinc oxide (ZnO) and erbium doped zinc oxide (ZnO:Er) thin films on heated glass substrates using spray pyrolysis technique. The effect of erbium dopant on structural, morphological, luminescent and nonlinear optical properties was studied. The deposited films have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), ex situ compositional analysis (ESCA), profilometry, cathodoluminescence (CL) and third harmonic generation (THG) measurements. All films were polycrystalline, having a preferential growth orientation along the ZnO (0 0 2) plane, with a corresponding average crystallite size of less than 41 nm. Addition of erbium can effectively control the film surface morphology and its cathodoluminescent properties. The films containing low erbium concentration show a uniform surface covered with hexagonal shaped grains and a strong UV light emission intensity as well as TH response. In contrast, when the erbium doping ratio exceeds 3%, a porous surface with columnar textural growth becomes more pronounced, and a substantial reduction of the cathodoluminescent and TH response. A strong TH signal was obtained for the film with good crystalline quality at the concentration of 2%. Third order nonlinear optical susceptibility (χ〈3〉) values of the studied materials were in the remarkable range of 10−12 esu.  相似文献   

20.
Nitrogen doped amorphous carbon (a-C:N) films are a material that may successfully compete with DLC coatings, which have high hardness, high wear resistance, and a low friction coefficient. The a-C:N films were prepared on silicon substrate by a closed-field unbalanced magnetron sputtering method with a graphite target and using the Ar/N2 mixture gases. And, we investigated the effects of various DC bias voltages from 0 to −300 V on the structural and tribological properties of the a-C:N films. This study was focused on improving physical properties of the a-C:N film by controlling process parameters like negative substrate DC bias voltage. The maximum hardness of the a-C:N film was 23 GPa, the friction coefficient was 0.08, and the critical load was 25 N on a Si wafer. Consequently, the structural and tribological properties of the a-C:N film showed a clear dependence on the energy of ions bombardment and the density of the sputtering and the reaction gases during film growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号