首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

2.
The effect of substrate roughness on growth of ultra thin diamond-like carbon (DLC) films has been studied. The ultra thin DLC films have been deposited on silicon substrates with initial surface roughness of 0.15, 0.46 and 1.08 nm using a filted cathodic vacuum arc (FCVA) system. The films were characterized by Raman spectroscope, transmission electron microscope (TEM) and atomic force microscopy (AFM) to investigate the evolution of the surface roughness as a function of the film thickness. The experimental results show that the evolution of the surface morphology in an atomic scale depends on the initial surface morphology of the silicon substrate. For smooth silicon substrate (initial surface roughness of 0.15 nm), the surface roughness decreased with DLC thickness. However, for silicon substrate with initial surface roughness of 0.46 and 1.08 nm, the film surface roughness decreased first and then increased to a maximum and subsequently decreased again. The preferred growth of the valley and the island growth of DLC were employed to interpret the influence of substrate morphology on the evolution of DLC film roughness.  相似文献   

3.
In this study, we investigated the surface properties of diamond-like carbon (DLC) films for biomedical applications through plasma etching treatment using oxygen (O2) and hydrogen (H2) gas. The synthesis and post-plasma etching treatment of DLC films were carried out by 13.56 MHz RF plasma enhanced chemical vapor deposition (PECVD) system. In order to characterize the surface of DLC films, they were etched to a thickness of approximately 100 nm and were compared with an as-deposited DLC film. We obtained the optimum condition through power variation, at which the etching rate by H2 and O2 was 30 and 80 nm/min, respectively. The structural and chemical properties of these thin films after the plasma etching treatment were evaluated by Raman and Fourier transform infrared (FT-IR) spectroscopy. In the case of as-deposited and H2 plasma etching-treated DLC film, the contact angle was 86.4° and 83.7°, respectively, whereas it was reduced to 35.5° in the etching-treated DLC film in O2 plasma. The surface roughness of plasma etching-treated DLC with H2 or O2 was maintained smooth at 0.1 nm. These results indicated that the surface of the etching-treated DLC film in O2 plasma was hydrophilic as well as smooth.  相似文献   

4.
Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp3/sp2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed.  相似文献   

5.
In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5-20 mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7 GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8 GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.  相似文献   

6.
This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.  相似文献   

7.
A magnetic force microscopy is used to examine the domain walls in nickel and cobalt films deposited by argon ion sputtering. Thin nickel films deposited at high substrate temperatures exhibit coexistent Bloch and Neel walls. Films grown at room temperature display alternative Bloch lines with cap switches. These films agglomerate to form grains after annealed at high temperatures. The film composed of larger grains behaves better nucleation implying magnetic domains of closure, while the film composed of smaller grains exhibits more defects implying alternative Bloch lines. We have also observed domain displacements and cap switches, which occur due to precipitation of particles in small grain size films. Stripe domains are observed for film thicknesses larger than 100 nm. They become zigzag cells when an external field of 1.5 T is applied perpendicular to the surface of the films. This experiment indicates that the domain sizes in thin films and the strip widths for thick films both depend on the square-root of the film thickness, which varies from 5 to 45 nm and from 100 to 450 nm, respectively.  相似文献   

8.
This study examined the friction and wear behavior of diamond-like carbon (DLC) films deposited from a radio frequency glow discharge using a hydrogen diluted benzene gas mixture. The DLC films were deposited on Si (1 0 0) and polished stainless steel substrates by radio frequency plasma-assisted chemical vapor deposition (r.f.-PACVD) at hydrogen to benzene ratios, or the hydrogen dilution ratio, ranging from 0 to 2.0. The wear test was carried out in both ambient and aqueous environments using a homemade ball-on-disk type wear rig. The stability of the DLC coating in an aqueous environment was improved by diluting the benzene precursor gas with hydrogen, suggesting that hydrogen dilution during the deposition of DLC films suppressed the initiation of defects in the film and improved the adhesion of the coating to the interface.  相似文献   

9.
Absorbing Film Assisted Laser Induced Forward Transfer (AFA-LIFT) is a modified LIFT method where a high absorption coefficient thin film coating of a transparent substrate is used to transform the laser energy into kinetic in order to transfer the “target” material spread on it. This method can be used for the transfer of biomaterials and living cells, which could be damaged by direct irradiation of the laser beam. In previous experiments, ∼50-100 nm thick metal films have been used as absorbing layer. The transferred material can also contain metal microparticles originating from the absorbing thin film and acting as non-desired impurities in some cases. The aim of our work was to study how the properties (number, size and covered area) of metal particles transferred during the AFA-LIFT process depend on film thickness and the applied fluence. Silver thin films with different thickness (50-400 nm) were used as absorbing layers and real experimental conditions were modeled by a 100 μm thick water layer. The particles transferred without the use of water layer were also studied. The threshold laser fluence for the complete removal of the absorber from the irradiated area was found to strongly increase with increasing film thickness. The deposited micrometer and submicrometer particles were observed with optical microscope and atomic force microscope. Their size ranged from 100 nm to 20 μm and depended on the laser fluence. The increase in fluence resulted in an increasing number of particles of smaller average size.  相似文献   

10.
Cobalt doped zinc oxide (ZnO:Co) thin films were deposited on glass substrates by ultrasonic spray technique decomposition of Zinc acetate dihydrate and cobalt acetate tetrahydrate in an ethanol solution with film thickness. All films are polycrystalline with a hexagonal wurtzite-type structure with a preferential orientation according to the direction (0 0 2), with the maximum crystallite size was found of 59.42 nm at 569 nm. The average transmittance of all films is about 65–95% measured by UV–vis analyzer. The band gap energy increased from 3.08 to 3.32 eV with increasing the film thickness from 192 to 569 nm. The increase of the electrical conductivity with increases in the film thickness to maximum value of 9.27 (Ω cm)−1 can be explained by the increase in carrier concentration and displacement of the electrons of the films. The correlation between the band gap and crystal structure suggests that the band gap energy of Co doped ZnO is influenced by the crystallite size and the mean strain.  相似文献   

11.
The present study investigates the optical behavior of composite nanostructured DLC based films and functional coatings. Diamond-like carbon (DLC) thin films were synthesized by electrodeposition method onto SnO2-coated glass substrates using an electrolyte of a mixture of acetic acid and water. Nanoparticles of nickel were then introduced into the DLC matrix. Morphology of the metal incorporated thin films and distribution of nanoparticles were studied by SEM; continuous homogeneous distribution of the particles was observed. Raman spectroscopy showed additional peaks in addition to the peaks due to DLC matrix. FTIR spectra revealed new peaks in the lower wave number region due to metal inclusion. UV-vis transmittance studies were performed to calculate the band gap of the samples. The estimated band gap from the Tauc relation was found to vary from 2.63 eV for the virgin DLC to 1.48 eV for the metal incorporated DLC.  相似文献   

12.
Undoped ZnO film and ZnO films, which are co-doped with F and In (FIZO) at different concentrations, were synthesized by sol–gel technique and the effects of co-doping of F and In on structural and optical properties of ZnO thin films were investigated. The concentration ratio of [F]/[Zn] was altered from 0.25 to 1.75 with 0.50 step at.% mole and [In]/[Zn] was altered from 0.25 to 1.00 with 0.25 step at.% mole. X-ray diffraction analysis indicates that the films have polycrystalline nature and the (0 0 2) preferred orientation is the stronger peak. No extra phases involving zinc, fluorine and indium compounds were observed even at high F and In content. The grain size of undoped ZnO and FIZO thin films varied between 15 and 20 nm with a small fluctuation. From the SEM images, although the undoped ZnO had a smooth and particle-shaped surface, FIZO films had nanofiber-networks shapes over the surface with average size of 500 nm. The surface morphologies and crystallite sizes for the F and In doped films were slightly different from than those of undoped film. From the optical study, a slight shrinkage of band gap was backwardly observed from 3.36 to 3.25 eV with the increasing of F and In content.  相似文献   

13.
Arrays of elliptical particles with aspect ratio 1:3 and short axes 50, 100 and 150 nm were prepared by electron-beam lithography and ion-beam milling of epitaxial (0 0 1)Fe films of thicknesses 10 and 20 nm. The domain state of an individual particle imaged by magnetic force microscopy in zero field after demagnetization was observed to change from being bi-domain or multidomain (MD) to stable single domains (SD) as the lateral size and film thickness were decreased. The critical size for SD formation was found to be close to the actual lateral sizes of 100 nm×300 nm and 150 nm×450 nm for the thicknesses of 20 and 10 nm, respectively. Only in the 10 nm thick ellipses of lateral size 100 nm×300 nm, the magnetization reversal may take place through coherent rotation. For all other investigated samples, the experimental switching field is lower than what would be required for this process.  相似文献   

14.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

15.
Diamond-like carbon (DLC) films were deposited on Si (1 0 0) substrate using a low energy (219 J) repetitive (1 Hz) miniature plasma focus device. DLC thin film samples were deposited using 10, 20, 50, 100 and 200 focus shots with hydrogen as filling gas at 0.25 mbar. The deposited samples were analyzed by XRD, Raman Spectroscopy, SEM and XPS. XRD results exhibited the diffraction peaks related to SiO2, carbon and SiC. Raman studies verified the formation amorphous carbon with D and G peaks. Corresponding variation in the line width (FWHM) of the D and G positions along with change in intensity ratio (ID/IG) in DLC films was investigated as a function of number of deposition shots. XPS confirmed the formation sp2 (graphite like) and sp3 (diamond like) carbon. The cross-sectional SEM images establish the 220 W repetitive miniature plasma focus device as the high deposition rate facility for DLC with average deposition rate of about 250 nm/min.  相似文献   

16.
In this work, formation of gold nanoparticles in radio frequency (RF) reactive magnetron co-sputtered Au-SiO2 thin films post annealed at different temperatures in Ar + H2 atmosphere has been investigated. Optical, surface topography, chemical state and crystalline properties of the prepared films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD) techniques, respectively. Optical absorption spectrum of the Au-SiO2 thin films annealed at 800 °C showed one surface plasmon resonance (SPR) absorption peak located at 520 nm relating to gold nanoparticles. According to XPS analysis, it was found that the gold nanoparticles had a tendency to accumulate on surface of the heat-treated films in the metallic state. AFM images showed that the nanoparticles were uniformly distributed on the film surface with grain size of about 30 nm. Using XRD analysis average crystalline size of the Au particles was estimated to about 20 nm.  相似文献   

17.
NiO nanoparticle thin films grown on Si substrates were irradiated by 107 MeV Ag8+ ions. The films were characterized by glancing angle X-ray diffraction and atomic force microscopy. Ag ion irradiation was found to influence the shape and size of the nanoparticles. The pristine NiO film consisted of uniform size (∼100 nm along major axis and ∼55 nm along minor axis) elliptical particles, which changed to also of uniform size (∼63 nm) circular shape particles on irradiation at a fluence of 3 × 1013 ions cm−2. Comparison of XRD line width analysis and AFM data revealed that the particles in the pristine films are single crystalline, which turn to polycrystalline on irradiation with 107 MeV Ag ions.  相似文献   

18.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

19.
Uranium dioxide films were deposited on Si (1 1 1) substrates by dc magnetron sputtering method at different sputtering parameters. The structure, morphology and chemical state of the films were studied by field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy. Influences of film thickness on the microstructure and optical properties were investigated. Experimental results show that the film crystallites are preferentially oriented with the (1 1 1) planes. The average grain size increases with increasing film thickness. AFM images show that the root mean square roughness of the films is between 1.2 nm and 2.1 nm. Optical constants (refractive index, extinction coefficient) of the films in the wavelength range of 350-1000 nm are obtained by ellipsometric spectroscopy. The result shows that the refractive index decreases with the increasing film thickness, while extinction coefficient increases with the film thickness.  相似文献   

20.
In this work, silicon suboxide (SiOx) thin films were deposited using a RF magnetron sputtering system. A thin layer of gold (Au) with a thickness of about 10 nm was sputtered onto the surface of the deposited SiOx films prior to the thermal annealing process at 400 °C, 600 °C, 800 °C and 1000 °C. The optical and structural properties of the samples were studied using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and optical transmission and reflection spectroscopy. SEM analyses demonstrated that the samples annealed at different temperatures produced different Au particle sizes and shapes. SiOx nanowires were found in the sample annealed at 1000 °C. Au particles induce the crystallinity of SiOx thin films in the post-thermal annealing process at different temperatures. These annealed samples produced silicon nanocrystallites with sizes of less than 4 nm, and the Au nanocrystallite sizes were in the range of 7-23 nm. With increased annealing temperature, the bond angle of the Si-O bond increased and the optical energy gap of the thin films decreased. The appearance of broad surface plasmon resonance absorption peaks in the region of 590-740 nm was observed due to the inclusion of Au particles in the samples. The results show that the position and intensity of the surface plasmon resonance peaks can be greatly influenced by the size, shape and distribution of Au particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号