首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42 GPa. The surface texture of the NC Ni obtained in this way featured a high density (4 × 103 mm−2) of conical protuberances with an average height of 10.0 ± 2.0 μm and a tip radius of 2.5 ± 0.5 μm. This structure increased the water repellency and reduced the COF, compared to smooth NC Ni surfaces. The application of a short-duration (120 s) electrodeposition process that deposited “Ni crowns” with a larger radius of 6.0 ± 0.5 μm on the protuberances, followed by a perfluoropolyether (PFPE) solution treatment succeeded in producing a surface texture consisting of nanotextured protuberances that resulted in a very high water contact angle of 156°, comparable to that of the superhydrophobic lotus leaf. Additionally, the microscale protuberances eliminated the initial high COF peaks observed when smooth NC Ni films were tested, and the PFPE treatment resulted in a 60% reduction in the steady-state COFs.  相似文献   

2.
According to the reformed Cassie-Baxter equation, a superhydrophobic quartz fiber bundle boat was fabricated from mimicking the lotus leaf venation using chemical surface modifications and roughness introductions. Water contact angles as high as 165.8° were achieved for quartz fiber cloths. The loading capacities of the miniature boats made from the superhydrophobic quartz fiber bundles were measured. The highest loading weight, 10.19 g, was obtained by the boats with 2.0 mm spacing distance between fiber bundles. The striking loading capacities were believed to stem from the air film surrounding the superhydrophobic surfaces of the boats. The results of this study presented new applications of artificial hydrophobic surfaces in areas of aquatic devices.  相似文献   

3.
The radial variations in the velocity of longitudinal waves propagating through Japanese cedar and Japanese cypress were experimentally investigated. In addition, the tracheid length (TL), microfibril angle (MFA), air-dried density (AD), and moisture content (MC) were measured in order to determine the effect of wood properties on velocity variations within the wood trunk. For both species, the longitudinal wave velocities measured in the longitudinal direction (VL) exhibited minimum values near the pith. For Japanese cedar, VL increased from 3600 m/s toward the bark and soon attained a constant value (=4500 m/s). On the other hand, for Japanese cypress, VL kept increasing from 4000 m/s near the pith to 4800 m/s at the bark. These radial variations in VL coincided with those in the tracheid length. VL exhibited strong correlations with TL and MFA with a significant level of (< 0.01). These findings suggest that the TL and MFA greatly affect the radial variation in the ultrasonic wave velocity in softwood.  相似文献   

4.
According to the reformed Cassie-Baxter equation, the superhydrophobic phenylenebenzobisoxazole (PBO) fiber bundle boats were fabricated from mimicking the lotus leaf venation using chemical surface modifications and roughness introduction. Water contact angles as high as 152.3° were achieved for PBO fiber bundles. Furthermore, the loading capacities of the superhydrophobic PBO fiber bundle boats were also measured. And the highest loading weight, 8.36 g, was obtained by the boats treated with 2.0 wt.% (heptadecafluoro-1,1,2,2,-tetradecyl)trimethoxysilane (HFTES). The large loading capacities were believed to arise from the air film surrounding the superhydrophobic surfaces of boats. The results of this study presented new applications of artificial hydrophobic surfaces in areas of miniature aquatic devices.  相似文献   

5.
Investigations were carried out on the changes in the electrical and optical properties and surface roughness of the indium-tin oxide (ITO) anode as a function of DC pulse frequency during facing-target sputtering. The current density-voltage-luminescence (J-V-L) characteristics of organic light emitting diodes (OLEDs) developed on the anodes were measured and analyzed in relation to the properties of ITO. When the pulsed DC frequency was less than 120 kHz, the resistivity of ITO was maintained well below 4.3 × 10−4 Ω cm and the optical energy band gap was greater than 4.1 eV, but these properties changed abruptly at 150 kHz with the morphological transition from columnar to equi-axed. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 150 kHz. The J-V characteristics of the built-up OLED deteriorated slightly as the pulsed DC frequency increased to 120 kHz and then deteriorated rapidly at 150 kHz. The L-V curves, however, showed an improvement of luminescence as the frequency increased up to 120 kHz. These J-V-L characteristics imply that ITO which is more conductive and with a higher band gap can be obtained at the lower pulsed DC frequencies, which is desirable for higher current flow; however, better luminescence is closely related to smoother surfaces. Therefore, for the optimized J-V-L performance of OLEDs, a moderate pulse DC frequency, below the morphological transition of ITO, is desirable.  相似文献   

6.
The effect of surface roughness on subsequent growth of vanadium pentoxide (V2O5) nanowires is examined. With increasing surface roughness, both the number density and aspect ratio of V2O5 nanowires increase. Structures and morphology of obtained nanowires were characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The nanowires are approximately 40-90 nm in diameter and 2 μm in length. X-ray diffraction (XRD) analysis indicates that the obtained nanowires are orthorhombic structure with (0 0 1) out-of-plane orientation. The luminescence property of V2O5 nanowires has been investigated by photoluminescence (PL) at 150 K and 300 K. PL results show intense visible emission, which is attributed to different inter-band transitions between the V 3d and O 2p band. This simple fabrication approach might be useful for fabrication of large area V2O5 nanowires arrays with high density.  相似文献   

7.
The surface quality of CdZnTe plays an important role in the performance of sensors based on this material. In this paper the effect of chemical etching on Cd0.9Zn0.1Te sensor performance was examined. Sample surfaces were treated with the same concentration 2% Br-MeOH for different etching times (30 s, 2, 4, 6, 8 min). The surfaces were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and I-V Measurement. These results demonstrate that the best surface quality can be obtained by chemical etching for 30 s. Under these experimental conditions, the surface composition Te/Cd + Zn approaches 1, the roughness is lower than 3 nm, and the leakage current shows a value lower than 10 nA.  相似文献   

8.
Observations of vacancy clusters formed in Czochralski (Cz) Si after high energy ion implantation are reported. Vacancy clusters were created by 2 MeV Si ion implantation of 1 × 1015 ions/cm2 and after annealing between 600 and 650 °C. Doppler broadening measurements using a slow positron beam have been performed on the self-implanted Si samples, both as-implanted and after annealing between 200 and 700 °C for time intervals ranging from 15 to 120 min. No change in the S parameter was noted after the thermal treatment up to 500 °C. However, the divacancies (V2) created as a consequence of the implantation were found to start agglomerating at 600 °C, forming vacancy clusters in two distinct layers below the surface; the first layer is up to 0.5 μm and the second layer is up to 2 μm. The S-W plots of the data suggest that clusters of the size of hexavacancies (V6) could be formed in both layers after annealing for up to an hour at 600 °C or half an hour at 650 °C. After annealing for longer times, it is expected that vacancies are a mixture of V6 and V2, with V6 most probably dominating in the first layer. Further annealing for longer times or higher temperatures breaks up the vacancy clusters or anneals them away.  相似文献   

9.
To mimic the lotus leaf structure, micro- and nanometer honeycomb-like porous hierarchical microstructures were constructed on the Al2024 alloy surface in which the average diameter of micro-pores was ca. 10 μm while those of nano-pores varied from 200 to 300 nm. Super-hydrophobicity was achieved with a water contact angle of 158° and the sliding angle of 4° by modifying the textured surface with HFTHTMS (HFTHTMS = (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane).  相似文献   

10.
H. Rauscher  R.J. Behm 《Surface science》2007,601(19):4608-4619
The interaction of CO with structurally well-defined PtxRuy surface alloys supported on Ru(0 0 0 1) was investigated by thermal desorption spectroscopy and infrared reflection-absorption spectroscopy. The surface composition and the distribution of the surface atoms were controlled by high resolution scanning tunneling microscopy. On these surfaces, which have a nearly random distribution of the two surface species, the adsorption (and desorption) of CO is strongly modified compared to the pure elemental surfaces, by strain effects and electronic ligand effects. CO adsorbs exclusively in a linear configuration on Pt and Ru atoms for all surfaces investigated. The adsorption energy of CO is lowered on the alloy surfaces with respect to both Pt(1 1 1) and Ru(0 0 0 1), similar as for pseudomorphic monolayer Pt films. For both Pt and Ru sites the adsorption strength decreases with increasing Pt concentration.  相似文献   

11.
Ceramic components manufacturing by selective laser sintering   总被引:2,自引:0,他引:2  
In the present paper, technology of selective laser sintering/melting is applied to manufacture net shaped objects from pure yttria-zirconia powders. Experiments are carried out on Phenix Systems PM100 machine with 50 W fibre laser. Powder is spread by a roller over the surface of 100 mm diameter alumina cylinder. Design of experiments is applied to identify influent process parameters (powder characteristics, powder layering and laser manufacturing strategy) to obtain high-quality ceramic components (density and micro-structure).The influence of the yttria-zirconia particle size and morphology onto powder layering process is analysed. The influence of the powder layer thickness on laser sintering/melting is studied for different laser beam velocity V (V = 1250-2000 mm/s), defocalisation (−6 to 12 mm), distance between two neighbour melted lines (so-called “vectors”) (20-40 μm), vector length and temperature in the furnace. The powder bed density before laser sintering/melting also has significant influence on the manufactured samples density.Different manufacturing strategies are applied and compared: (a) different laser beam scanning paths to fill the sliced surfaces of the manufactured object, (b) variation of vector length (c) different strategies of powder layering, (d) temperature in the furnace and (e) post heat treatment in conventional furnace. Performance and limitations of different strategies are analysed applying the following criteria: geometrical accuracy of the manufactured samples, porosity. The process stability is proved by fabrication of 1 cm3 volume cube.  相似文献   

12.
Alkali-treated titanium surfaces have earlier shown to induce bone-like apatite deposition. In the present study, the effect of surface topography of two-dimensional and pore architecture of three-dimensional alkali-treated titanium substrates on the in vitro bioactivity was investigated. Titanium plates with a surface roughness of Ra = 0.13 μm, 0.56 μm, 0.83 μm, and 3.63 μm were prepared by Al2O3 grit-blasting. Simple tetragonal and face-centered Ti6Al4V scaffolds with spatial gaps of 450-1100 μm and 200-700 μm, respectively, were fabricated by a three-dimensional fiber deposition (3DFD) technique. After alkali treatment, the titanium plates with a surface roughness of Ra = 0.56 μm were completely covered with hydroxyapatite globules after 7 days in simulated body fluid (SBF), while the coverage of the samples with other surface roughness values remained incomplete. Similarly, face-centered Ti6Al4 scaffolds with spatial gaps of 200-700 μm exhibited a full surface coverage after 21 days in SBF, while simple tetragonal scaffolds with spatial gaps of 450-1100 μm were only covered for 45-65%. This indicates the importance of surface topography and pore architecture for in vitro bioactivity.  相似文献   

13.
D.M. Rampulla 《Surface science》2006,600(10):2171-2177
The rates of Br atom diffusion on several single crystalline Cu surfaces have been studied because of the potential impact of Br diffusion on the selectivity of alkyl bromide surface chemistry on Cu. Density functional theory (DFT) has been used to study the diffusion of isolated bromine atoms on a flat Cu surface, Cu(1 1 1), two Cu surfaces with straight steps, Cu(2 2 1) and Cu(5 3 3), and two kinked Cu surfaces, Cu(6 4 3) and Cu(5 3 1). Bromine diffusion is rapid on the flat Cu(1 1 1) surface with a barrier of ΔEdiff = 0.06 eV and a hopping frequency of ν = 4.8 × 1010 s−1 at 150 K. On the stepped and kinked surfaces the effective diffusion barriers lie in the range ΔEdiff = 0.18-0.31 eV. Thus the rates of diffusion are many orders of magnitude slower on stepped and kinked Cu surfaces than on the Cu(1 1 1) surface. Nonetheless, at temperatures relevant for alkyl bromide debromination on Cu surfaces, bromine atoms remain sufficiently mobile that they can explore all available binding sites on the timescale of the debromination reaction.  相似文献   

14.
Scanned-energy mode photoelectron diffraction (PhD), using the O 1s and V 2p photoemission signals, together with multiple-scattering simulations, have been used to investigate the structure of the V2O3(0 0 0 1) surface. The results support a strongly-relaxed half-metal termination of the bulk, similar to that found in earlier studies of Al2O3(0 0 0 1) and Cr2O3(0 0 0 1) surfaces based on low energy electron and surface X-ray diffraction methods. However, the PhD investigation fails to provide definitive evidence for the presence or absence of surface vanadyl (VO) species associated with atop O atoms on the surface layer of V atoms. Specifically, the best-fit structure does not include these vanadyl species, although an alternative model with similar relaxations but including vanadyl O atoms yields a reliability-factor within the variance of that of the best-fit structure.  相似文献   

15.
B.A. Hamad 《Surface science》2007,601(21):4944-4952
A density-functional theory (DFT) study is performed using a full-potential linearized-augmented-plane-waves (FP-LAPW) method to investigate the magnetic structure of vanadium-molybdenum systems (Vn/Mo(0 0 1), n = 1, 2). The topmost V layers relax inward in both systems with a larger contraction in V2/Mo(0 0 1) system. A p(1 × 1) in-plane ferromagnetic ordering with appreciable magnetic moments is obtained on V overlayers, which is found to be the ground state in both systems. The layers below the surface exhibit induced magnetism with antiferromagnetic interlayer coupling.  相似文献   

16.
Droplet behavior from the surfaces of pure metals Ti and Al ablated by high-intensity pulsed ion beam (HIPIB) with an ion current density from 30 to 200 A/cm2 has been investigated to explore the mechanism of mass transfer on HIPIB-irradiated materials. Droplet ejection on the ablated metal surface is studied by scanning electron microscope observation, energy dispersive X-ray spectroscopy analysis and profilometer measurement. The presence of ejected droplets from the irradiated surfaces is detected on both the surfaces of irradiated metals and substrates locating adjacent to the ablated surfaces. Moreover, the number density of droplets observed on both the surfaces tends to increase with increasing the ion current density. This phenomenon correlates to the fact that higher ion-beam intensity led to a more intense ablation, i.e. a severer droplet ejection. In addition, surface roughness (Ra) for the respective metals is continuously increased with increasing the ion current density, indicating a more significant disturbance on the melted surfaces caused by the correspondingly severer droplet ejection. Combined with the previous finding of selective ablation on titanium, it is concluded that the droplet ejection is the efficient cause of cratering and disturbance on HIPIB-ablated surfaces.  相似文献   

17.
We report on the UV laser-induced fluorescence of hexagonal boron nitride (h-BN) following nanosecond laser irradiation under vacuum and in different environments of nitrogen gas and ambient air. The observed fluorescence bands are tentatively ascribed to impurity and mono (VN) or multiple (m-VN with m=2 or 3) nitrogen vacancies. A structured fluorescence band between 300 and 350 nm is assigned to impurity-band transition and its complex lineshape is attributed to phonon replicas. An additional band at 340 nm, assigned to VN vacancies on surface, is observed under vacuum and quenched by adsorbed molecular oxygen. UV-irradiation of h-BN under vacuum results in a broad asymmetric fluorescence at ∼400 nm assigned to m-VN vacancies; further irradiation breaks more B-N bonds enriching the surface with elemental boron. However, no boron deposit appears under irradiation of samples in ambient atmosphere. This effect is explained by oxygen healing of radiation-induced surface defects. Formation of the oxide layer prevents B-N dissociation and preserves the bulk sample stoichiometry.  相似文献   

18.
Well-ordered clean InAs(1 1 1) A and B surfaces have been prepared using HCl-isopropanol solutions and characterized using low-energy electron diffraction and photoemission spectroscopy. The as-treated surfaces are covered by a layer containing arsenic and small amounts of InClx. Annealing induces desorption of the overlayer and reveals (2 × 2) and (1 × 1) structures on the A and B surfaces, respectively. For both surfaces, the surface components of the In 4d and As 3d reveal a charge transfer from the electropositive surface indium to the electronegative surface arsenic. The major advantage of this preparation method over conventional thermal cleaning is a significant reduction in the annealing temperature (≈250 °C) thereby avoiding anion evaporation.  相似文献   

19.
Scattering in the specular direction from unidirectional ground steel surfaces having random roughness is studied theoretically and experimentally. The grooves were oriented perpendicular and parallel to the plane of incidence and were illuminated by a light beam that was smaller than the sample size. Expressions for scattering from a one-dimensional rough surface in the specular direction were derived for the both orientations of the grooves. For the same groove orientations, scattering (λ = 0.633 μm) from the ground surfaces was measured in the specular direction at angles of incidence from 6° to 82°. The measured rms roughnesses of the surfaces were 0.096 μm, 0.143 μm, 0.311 μm, and 0.501 μm, respectively. The measured scattering was independent of the orientation of the grooves for the two smoother surfaces and depended on the groove orientation for the other surfaces. Calculations using the derived expressions taking into account the experimental results show that the scattering is independent of the orientation of the grooves if the rms roughness is no larger than ∼0.16 μm.  相似文献   

20.
Electron emission characteristics of Al-AlN granular films   总被引:1,自引:0,他引:1  
An electron conduction emitter of Al-AlN granular films was proposed for surface conduction electron emission device in this paper. The Al-AlN granular films with thickness of 30 nm were prepared between two co-planar electrodes with gap of 10 μm by magnetron sputtering. After electroforming the Al-AlN granular films, the films’ structure could be recovered by applying the periodic device voltage (Vf). Stable and uniform electron emission was observed with turn-on voltage of 5.3 V and threshold voltage of 9 V. The emitter emission current (Ie) of 4.84 μA for 36 cells was obtained with the anode voltage of 2.5 kV and the device voltage of 12 V. In addition, Fowler-Nordheim plots for Ie-Vf properties showed that the electron emission mechanism should be field emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号