首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antimony-doped tin oxide (ATO) nanostructures were prepared using chemical precipitation technique starting from SnCl2, SbCl3 as precursor compounds. The antimony composition was varied from 5 to 20 wt%. The lower resistance was observed at composition of Sn:95 and Sb:05, when compared with undoped and higher doping concentration of antimony. The average crystalline size of undoped and doped tin oxide was calculated from the X-ray diffraction (XRD) pattern and found to be in the range of 30-11 nm and it was further confirmed from the transmission electron microscopy (TEM) studies. The scanning electron microscopy (SEM) analysis showed that the nanoparticles agglomerates forming spherical-shaped particles of few hundreds nanometers. The samples were further analyzed by energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrical resistance measurements.  相似文献   

2.
Nano-sepiolite with novel morphology has been fabricated by solvothermal method in different conditions. The nano-sepiolite was characterized by X-ray fluorescence analysis, X-ray powder diffraction, thermal gravimetry analysis, differential thermal analysis and infrared spectroscopy. Scanning electron microscopy observations revealed that using of solvothermal route led to nano-wires of sepiolite. The reactions have been performed in several conditions to find out the role of different factors such as the aging time and temperature of the reaction in the solvothermal on the size and morphology of the nano-structures.  相似文献   

3.
Pure and Cu doped ZnO nanopowders (5, 10, 15, 20, 25 and 30 at% Cu) have been synthesized using co-precipitation method. Transmission Electron Microscopic analysis has shown the morphology of ZnO nanopowders to be quasi-spherical. Powder X-ray Diffraction studies have revealed the systematic doping of Cu into the ZnO lattice up to 10% Cu, though the peaks corresponding to CuO in 10% Cu are negligibly very small. Beyond this level, there was segregation of a secondary phase corresponding to the formation of CuO. Fourier Transform Infrared spectra have shown a broad absorption band at ∼490 cm−1 for all the samples, which corresponds to the stretching vibration of Zn-O bond. DC electrical resistivity has been found to decrease with increasing Cu content. The activation energy has also been observed to decrease with copper doping i.e. from ∼0.67 eV for pure ZnO to ∼0.41 eV for 30 at% Cu doped ZnO.  相似文献   

4.
We report the characterization of nano-size zinc oxide (ZnO) powder synthesized via microwave-assisted heating of Zn(CH3COO)2·2H2O and NaHCO3 solution with deionized water (DI water) as the solvent. The as-synthesized ZnO powder was calcined at temperatures from 400 to 800 °C for 8 h. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra revealed pure wurtzite structure for the ZnO nanopowder (NP) calcined at 800 °C. Scanning electron microscopy (SEM) images showed increasing size ZnO NP with uniform size distribution with increase in calcination temperature. Significant UV emission at about 373 nm has been observed in the photoluminescence (PL) spectra of the as-synthesized and calcined ZnO NP. Our results showed enhanced PL intensity with a reduced full-width at half-maximum (FWHM) for ZnO NP synthesized at higher calcination temperature.  相似文献   

5.
Nano-sized Tb-doped YAG phosphor particles were synthesized by a mixed solvo-thermal method using stoichiometric amounts of inorganic aluminum and yttrium salts. The formation of YAG:Tb was investigated by means of XRD and IR spectra. The pure crystalline-phase YAG was prepared under moderate synthesis conditions (300 °C and 10 MPa), indicating that ethanol partly replaces water as the solvent, thus favoring the formation of YAG. TEM images showed that YAG:Tb phosphor particles sintered at 300 °C were basically of spherical shape, with good dispersion about a particle size of around 80 nm. The crystalline YAG:Tb showed green emission with 5D47F6 (544 nm) as the most prominent group. The PL intensity and crystallinity of YAG:Tb phosphors increases with increasing synthesis temperature, and reaches maximum brightness at 300 °C, which is lower than that exhibited by a commercial product.  相似文献   

6.
Herbs and minerals are the integral parts of traditional systems of medicine in many countries. Herbo-Mineral medicinal preparations called Bhasma are unique to the Ayurvedic and Siddha systems of Indian Traditional Medicine. These preparations have been used since long and are claimed to be the very effective and potent dosage form. However, there is dearth of scientific analytical studies carried out on these products, and even the existing ones suffer from incomplete analysis. Jasada Bhasma is a unique preparation of zinc belonging to this class. This particular preparation has been successfully used by traditional practitioners for the treatment of diabetes and age-related eye diseases. This work presents a first comprehensive physicochemical characterization of Jasada Bhasma using modern state-of-the-art techniques such as X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), elemental analysis with energy dispersive X-ray analysis (EDAX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Our analysis shows that the Jasada Bhasma particles are in oxygen deficient state and a clearly identifiable fraction of particles are in the nanometer size range. These properties like oxygen deficiency and nanosize particles in Jasada Bhasma might impart the therapeutic property of this particular type of medicine. A. C. Joshi: Private Practitioner (Vaidya).  相似文献   

7.
Microwave-assisted synthesis is a novel method used to synthesize CdMoO4 nanoparticles in propylene glycol. The effects of reaction time and microwave power on phase, morphologies, and optical properties of CdMoO4 nanoparticles were studied, using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and UV-visible spectroscopy. The present analyses proved that these crystalline powders were scheelite-type tetragonal structured CdMoO4, with the crystallite size of 14-20 nm, and 4.51-4.73 eV band gaps, controlled by the synthetic conditions.  相似文献   

8.
Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a general approach for the preparation of sandwich-like graphene/ZnO nanocomposites in ethylene glycol (EG) medium using graphene oxide as a precursor of graphene and zinc acetylacetonate as a single-source precursor of zinc oxide. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that the as-formed ZnO nanoparticles with a diameter of about 5 nm were densely and uniformly deposited on both surfaces of the graphene sheets to form a sandwich-like composite structure and as a result, the restacking of the as-reduced graphene sheets was effectively prevented. The ZnO-coated graphene nanocomposites can be expected to effectively improve the photocatalysis and sensing properties of ZnO and would be promising for practical applications in future nanotechnology.  相似文献   

9.
Cobalt-doped ceria nanoparticles were synthesized using the polyol method under co-precipitation hydrolysis. The structural, morphological, optical and redox properties were observed to investigate the influence of different concentration of cobalt ion doping on the prepared CeO2 nanomaterials in terms of X-ray diffraction, field-emission transmission electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, UV/vis absorption spectroscopy and temperature program reduction techniques. The optical band gap energy was calculated from the optical absorption spectra for doped ceria nanoparticles, which have been found to be 2.68, 2.77, and 2.82 eV for the 2, 4, and 7 mol% Co ion-doped CeO2 nanoparticles, respectively. As observed, the band gap energies increases as the doping Co ion concentrations increased, which could be due to significant increased oxygen vacancies with Co doping. The synergistic interaction between Co and CeO2 was the main factor responsible for high catalytic activity of cobalt-doped CeO2 model catalysts.  相似文献   

10.
The elastic properties of high-quality ZnO crystals and nanopowder of grain size of about 65 nm are studied for both wurtzite (low pressure) and rock-salt high pressure phases. The measured values of bulk moduli for wurtzite and rock-salt phases of bulk ZnO crystals are equal to 156±13 and 187±20 GPa, respectively, and considerably larger for ZnO nanocrystals. The phase transition begins at a pressure of about 9 GPa and it is completed at a pressure of about 13.8 GPa for bulk crystals, whereas the values of pressure at which the phase transition occurs are lower for nanocrystals. A carefull Rietveld analysis of the obtained data does not exhibit the presence of any intermediate phases between low pressure wurtzite and high pressure rock-salt phases of ZnO. The phase transition is accompanied by a strong decrease in the near-band-gap photoluminescence intensity. In addition, the pressure coefficient of the near-band-gap luminescence in ZnO nanocrystals exhibits strong deviation from the linearity observed in bulk crystals. An analysis of the results shows that defects present in the nanopowdered sample are responsible for the observed effects.  相似文献   

11.
Air stable colloidal copper nanoparticles are synthesized by a simple chemical reduction method using octadecylsilane as a reducing agent and octadecylamine as a stabilizing agent in toluene without any inert gas. The formation of nanosized copper was confirmed by its characteristic surface plasmon absorption peaks in UV–visible spectra. The transmission electron microscopic (TEM) images show that the resulting copper nanoparticles are distributed uniformly with a narrow size distribution. The X-ray diffraction (XRD) demonstrated that the obtained copper nanoparticles are single crystalline nanoparticles. Fourier transform infra-red (FT-IR) spectroscopic data suggested that the silane Si–H is responsible for the reduction of copper ions. And also the resulting colloidal copper nanoparticles exhibit large surface-enhanced Raman scattering (SERS) signals.  相似文献   

12.
13.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

14.
Zinc sulfide (ZnS) quantum dots (QDs) were synthesized using the microwave assisted ionic liquid (MAIL) route. Three ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4]), trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl) amide ([P6,6,6,14][TSFA]) and trihexyl(tetradecyl) phosphonium chloride ([P6,6,6,14][Cl]) were used in this study. The size and structure of the QDs were characterized by high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) pattern, respectively. The synthesized QDs were of wurtzite crystalline structure with size less than 5 nm. The QDs were more uniformly distributed while using the phosponium based ILs as a reaction medium during synthesis. The optical properties were investigated by UV–vis absorption and photoluminescence (PL) emission spectroscopy. The optical properties of QDs showed the quantum confinement effect in their absorption and the effect of cation and anion structural moiety was observed on their bandedge emission. The QDs emission intensity was measured higher for [P6,6,6,14][Cl] due to their better dispersion as well as high charge density of Cl anion. The capability of the ILs in stabilizing the QDs was interpreted by density functional theory (DFT) computations. The obtained results are in good agreement with the theoretical prediction.  相似文献   

15.
The zinc oxide films were prepared by the sol-gel method on the ordinary glass substrates. The activity of slip systems were evaluated by X-ray diffraction line broadening analysis using convolution multiple whole profile (CMWP) fitting procedures. It was found that in all temperatures the 〈a〉 type dislocations is dominating and its fraction increases with the rise of annealing temperature in the range of 350-600 °C. The investigation on the optical properties of films showed that the optical band gap energy increases linearly with the annealing temperature and crystallite size but decreases with the lattice strain.  相似文献   

16.
In this paper a novel and simple route for the preparation of copper ferrite (CuFe2O4) is proposed. The present investigation reports, the novel synthesis of CuFe2O4 samples C1, C2, C3 and C4 using hydrothermal method and its physicochemical characterization. In order to elucidate the relationship between the constituent, structure, magnetic and PL properties product's particle size, morphological and structural properties were characterized by the X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), photoluminescence (PL) and magnetic properties. The crystallization, surface morphology, magnetic properties and luminescence properties of the samples have been investigated. The relatively high Ms of the samples suggests that this method is suitable for preparing high-quality nanocrystalline copper ferrites for practical applications. Different mechanisms to explain the obtained results and the correlation between magnetism and structure are discussed.  相似文献   

17.
The influence of Al, Er and H in ZnO thin films (ZnO:Al, ZnO:Er and ZnO:H) deposited by magnetron sputtering at different substrate temperatures, Ts, on their optical, structural and electrical properties was investigated. X-ray diffraction (XRD) analyses show an improvement of the crystalline structure with increasing Ts. The optical band gap, , of the films, from transmission and reflection spectra, ranged from 3.27 to 3.41 eV. The Urbach band tail width was also calculated. Incorporation of Al and Er resulted in a reduced and an increased resistivity, ρ, respectively, and an increase in the Urbach tail width in both cases. However, sputtering in an Ar+H2 gas mixture led to an increase in ρ and an improvement in the structural order of the films. A discussion of the influence of Ts and of Al, Er and H on the properties is presented.  相似文献   

18.
In this paper, we report the synthesis of silica coated ZnO nanoparticles by ultrasound irradiation of a mixture of dispersion of ZnO, tetraethoxysilane (TEOS), and ammonia in an ethanol-water solution medium. The silica coating layer formed at the initial TEOS/ZnO loading of 0.8 for 60 min ultrasonic irradiation was uniform and extended up to 3 nm from the ZnO surface as revealed from HR-TEM images. Silica coated ZnO nanoparticles demonstrated a significant inhibition of photocatalytic activity against photodegradation of methylene blue dye in aqueous solution. The effects of silica coating on the UV blocking property of ZnO nanoparticles were also studied.  相似文献   

19.
Co3O4 nanoparticles have been prepared for the first time via reflux method, as an alternative low-temperature high-yield process, starting from one single precursor. A plausible mechanism is suggested for the synthetic process. XRD, TEM, FTIR and VSM were used for the structural, morphological, spectroscopic, and magnetic characterization of the product respectively. X-ray diffraction line profile fitting showed that average particle size of the sample is 28 nm. Morphology of the synthesized powder was observed to be thin nanosheets with a thickness of 2-3 nm based on SEM and TEM analyses. Magnetic measurements showed a deviation of the Neel temperature from the bulk value which is attributed to the finite size effects. A loop shift with an enhanced coercivity is observed in the field-cooled hysteresis loops. The opening of the hysteresis loop reveals the existence of the spin-glass like surface spins of the Co3O4 nanoparticles.  相似文献   

20.
Pencil-like ZnO microrods was synthesized via a simple solvothermal process in an aqueous solution of ethylenediamine and ethanolamine. The as-prepared ZnO was characterized by X-ray powder diffraction, field-emission scanning electron microscopy, room temperature photoluminescence spectra and UV–vis absorption spectra. The results indicated that ZnO microrods had the length in the range of 1.3–25 μm. The photocatalytic activity was studied by degradation of methylene blue (MB) aqueous solution, which showed that the as-prepared ZnO microrods possessed a high photocatalytic activity. The formation mechanism of the pencil-like ZnO was also investigated based on the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号