首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple acid-base bifunctionalized approach has been developed through grinding the precursors, magnesium and aluminium nitrates, with the as-prepared SBA-15, and then the generation of acid-base active sites and removal of host template were combined into a single step in the subsequent calcination procedure. A series of acid-base bifunctional mesoporous materials MgO-Al2O3-SBA-15 (MA-SBA-15) have been successfully synthesized by means of this approach. X-ray diffraction (XRD), high-resolution transmission electron microscopes (HRTEMs), N2 adsorption, FT-IR spectra, 27Al and 29Si magic-angle-spinning (MAS) NMR, NH3- and CO2-temperature programmed desorption (TPD), pyridine adsorption were employed to characterize the resultant mesoporous materials. The results indicate that the guests can be well dispersed in the channel of SBA-15, and the resultant materials exhibit excellent acid-basic properties with well mesoporous backbone, which make it possessing high activity for the synthesis of ethyl methyl carbonate, an important asymmetric carbonate ester compound.  相似文献   

2.
A series of surface-modified mesoporous silica endowing with acid-base properties have been successfully synthesized in one pot by in situ introduction of zirconium and magnesium salts into the initial mixture of synthesizing mesoporous silica (SBA-15) and this method combines into a single step to form a novel material with a periodically ordered mesoporous backbone and specific chemical reactivity of the acid-basic sites. X-ray diffraction, high-resolution transmission electron microscopes (HRTEM), N2 adsorption, FT-IR transmission spectra, 29Si MAS NMR spectra, NH3- and CO2-temperature programmed desorption (TPD) are employed to characterize the titled mesoporous materials. The results indicate that the product possesses excellent acid-basic properties with well mesoporous structure, which make it promising for their application in heterogeneous catalysis and adsorption-separation processes.  相似文献   

3.
Highly CH3-functionalized mesoporous silica with nearly spherical morphology was synthesized under acidic conditions by co-condensation of two different silica precursors polymethylhydrosiloxane (PMHS) and tetraethoxysilane (TEOS) in the presence of triblock copolymer P123 as template. XRD, N2 adsorption–desorption, HRTEM, SEM and 29Si MAS NMR were used to identify its highly-ordered mesopore array structure, nearly spherical particle morphology and CH3 functionalization of the as-synthesized material. The resulting hydrophobic mesoporous silica possessed regular mesochannel arrays, indicating that the introduction of PMHS had little impact on the formation of an ordered mesostructure. Also, PMHS played an important role in morphology control and organic functionalization, ensuring nearly spherical particle morphology and high CH3 functionalization degree of the obtained mesoporous silica material. As compared with pristine mesoporous silica SBA-15, the hydrophobic mesoporous silica showed the higher adsorption performance when they were used as adsorbents to remove organic pollutant nonylphenol at a very low concentration from aqueous solution.  相似文献   

4.
Schiff base functionalized SBA-15 mesoporous materials were synthesized by post-grafting of salicylaldehyde onto silylated and non-silylated amino-modified SBA-15 and followed by the introduction of Cu(II) ions via a ligand exchange reaction. Both hybrid materials prepared were characterized by XRD, FT-IR, UV-vis spectroscopy, N2 adsorption/desorption, TG/DTA and ICP-AES techniques and comparatively examined as catalysts in epoxidation of styrene with 30 wt.% aqueous hydrogen peroxide as oxidant. It was found that the silylated material was more active and selective to styrene oxide than the non-silylated one in CH3CN. The considerably improved activity (86.1%) and styrene oxide selectivity (95.2%) were achieved after 30 min when adding sodium hydroxide to maintain a pH of 7.5-8.0 in reaction medium. Moreover, the silylated catalyst showed good recoverability and relatively high stability against leaching of active copper species. These superior effects were attributed to the high hydrophobic character of the solid surface produced by the silanol neutralization.  相似文献   

5.
Adsorption of pure CO2 on SBA-15 impregnated with branched polyethyleneimine (PEI) has been studied. Materials were prepared by impregnating the pore surface of SBA-15 mesoporous silica with different amounts of branched PEI (10, 30, 50 and 70 wt%). Textural properties, elemental analysis and low angle XRD measurements of the prepared samples showed a progressive pore filling of SBA-15 as PEI loading was increased. Pure CO2 adsorption isotherms on these modified SBA-15 materials were obtained at 45 °C, showing high adsorption efficiency for CO2 removal at 1 bar. Chemisorption of CO2 on amino sites of the modified SBA-15 seems to be the main adsorption mechanism. PEI content of impregnated SBA-15 influences the adsorption capacity of the material, being a relevant variable for CO2 removal by adsorption. Temperature effect on adsorption was also studied in the range 25-75 °C, showing that temperature strongly influences CO2 adsorption capacity. Adsorption capacity was also tested after regeneration of the PEI-impregnated SBA-15 materials. Our results show that these branched PEI-impregnated materials are very efficient even at low pressure and after several adsorption-regeneration cycles.  相似文献   

6.
K2CO3-SBA-15 with different K2CO3 content was prepared by thermal dispersion. The structures of resultant powders were characterized by XRD, N2 adsorption and IR. The humidity sensing properties of the powders were also investigated. Compared with pure SBA-15, K2CO3-SBA-15 shows improved humidity sensing properties and the introducing level of K2CO3 has a great influence on the humid sensitivity of K2CO3-SBA-15 composites. The optimal mixing ratio was K2CO3-SBA-15 (0.8 g/g), which exhibited excellent linearity in the whole range of 11–95%RH, a resistance variation of about five orders of magnitude, and a rapid response time and recovery time about 15 and 50 s, respectively. The mechanism of the humidity sensitive properties was also discussed.  相似文献   

7.
SBA-15-Fe was synthesized via the incorporation of Fe0 nanoparticles (Fe(0)-Nps) in the mesoporous channels. Electron microscopy and X-ray diffraction showed that dispersion of fine iron NPs occurs mainly inside the channels of SBA-15, producing a slight structure compaction. This was accompanied by a significant improvement of both the affinity towards hydrogen and electrical conductivity, as supported by hydrogen adsorption tests and impedance measurements. CO2 thermal programmed desorption measurements revealed an attenuation of the acid character of the solid surface. This was explained in terms of strong iron interaction with the lattice oxygen atoms that reduces the SiO–H bond polarity. The close vicinity of fine Fe(0)-Nps combined with the large pore size of SBA-15 appear to contribute to a synergistic improvement of the electrical conductivity. The results reported herein open new prospects for SBA-15 as potential adsorbents for hydrogen storage and carriers for hydrogen sensors. The use of iron in lieu of noble metals for designing such materials is a novelty, because such applications of iron-loaded silica have not been envisaged so far due to the high reactivity of iron towards air and water. The development of such technologies, if any, should address this issue.  相似文献   

8.
In this study, highly ordered mesoporous silica material (SBA-15) functionalized with N-(quinoline-8-yl)-2-(3-triethoxysilyl-propylamino)-acetamide (QTPA) as zinc probe has been reported. The anchoring to the surface of the SBA-15 was carried out by the reaction between the precursor and the hydroxyl groups available on the inner surface of the support. The primary ordered mesoporous structure of SBA-15 was well preserved after the grafting procedure. Fluorescence characterization showed that the obtained organic-inorganic hybrid composite displayed highly selective and sensitive to Zn2+ ion over other cations such as Cd2+, Pb2+, Ni2+ and Co2+. And the hybrid material has ideal chemical and spectroscopic properties for further biological and environmental applications.  相似文献   

9.
The adsorption behaviour of the n-octane/ethanol binary liquid mixture has been studied on ordered mesoporous silica materials. Adsorption excesses on SBA-15, SBA-16 and MCM-48 solids are measured and described by mathematical functions. The experimental adsorption excess isotherms are presented and discussed. The mesoporous silicas used for liquid-adsorption experiments are characterized by nitrogen adsorption before and after liquid adsorption by the powder X-ray diffraction (XRD) and by the sample controlled thermal analysis (SCTA).  相似文献   

10.
Yan Sun 《Applied Surface Science》2007,253(13):5650-5655
Two series of ordered mesoporous materials, SBA-15 silica and CMK-3 carbon were synthesized. The ordered nanostructure of these materials was confirmed by TEM and XRD analysis. Structural parameters including the specific surface area, pore volume and pore size distribution were determined on the basis of nitrogen adsorption data at 77 K. Potential applications of these materials were explored in relation to the CO2 sequestering, methane storage and fuel desulfurization. Initial studies of both materials showed their usefulness for environmental and clean energy applications. SBA-15 modified with triethanolamine showed a very good adsorption selectivity for CO2 while its adsorption reversibility was retained. Also, this material after CuCl deposition was useful for removal of fuel thiophenes. However, CMK-3 was shown to be promising material for storage of natural gas. As high as 41 wt.% of methane was stored in this material in the presence of appropriate amount of water.  相似文献   

11.
Based on the chemical model of coal, slit micropores with different pore sizes are established and structures are optimized in the software of materials studio. As the temperature rises, absolute adsorption capacities of H2O are slightly affected, while absolute adsorption capacities of CO2 and CH4 gradually decrease. As the fugacity rises, excess adsorption curves of CO2 experience increase-decrease-gentle three stages, while the curves of CH4 gradually decrease. With the increase of pore size, adsorption capacities of H2O increase, while adsorption capacities of CO2 and CH4 gradually decrease. H2O firstly adsorbs on the oxygen-containing functional group, so the walls of pore are the preferential area for H2O, while CO2 and CH4 choose to adsorb on–C–C–, therefore the walls are the primary area for CO2 and CH4. Strong potential in micropores and hydrogen bond among water molecules will promote the water adsorption, while the adsorptions of CO2 and CH4 are only induced by the Van der Waals interaction, but the difference between adsorption density and bulk density of CO2 and CH4 decides the change of excess adsorption capacity.  相似文献   

12.
Adsorption of octadecyltrichlorosilane (OTS) on mesoporous SBA-15 has been studied by using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermo-gravimetric analysis (TGA) techniques. BET surface area analysis shows decrease of surface area from 930 to 416 m2/g after OTS adsorption. SEM pictures show close attachment of SBA-15 particles. EDAX measurements show increase of carbon weight percentage and decrease of oxygen and silicon weight percentage. XPS results closely support EDAX analysis. FTIR spectra shows presence of methyl (-CH3) and methylene (-CH2) bands and oriented OTS monolayer on SBA-15. Thermo-gravimetric analysis shows that the OTS adsorbed on SBA-15 are stable up to a temperature of 230 °C and that the OTS monolayers decompose between 230 and 400 °C.  相似文献   

13.
SBA-15 nanoporous silicas functionalized with amine-, thiol-, vinyl-, phenyl- and cyano surface groups were synthesized by using the amphiphilic block copolymer P123 as the structure-directing agent. The obtained materials have a well-developed porous structure - the values of specific surface area are in the range 800-950 m2/g and the sizes of cylindrical mesopores are in the range 7.4-8.6 nm. It was established that the size of the mesopores strongly depends even on small amounts of co-monomers co-condensing with TEOS. Adsorption of Zn(II) ions at the SBA-15/NaCl interface was investigated by means of the radioactive isotope tracer technique over the pH range of 3-11. Surface charge density, adsorption density, pH50% and ΔpH10-90% parameters for different concentrations of the carrying electrolyte were evaluated and discussed.  相似文献   

14.
The regeneration of thiol-functionalized SBA-15 adsorbents of mercury is presented in this article. The influence of temperature and pH on the adsorption process was studied. The effect due to the presence of complexing agents in aqueous solution on the desorption step was also evaluated. Hg(II) maximum adsorption capacities at different temperatures ranging from 20 °C to 60 °C were obtained and it was found that temperature does not affect the adsorption process. Mercury adsorption capacity was also determined in the presence of HNO3 and HCl up to 3 M concentration. The comparison of the results showed that whereas hydrochloric acid exhibits an appreciable capacity to regenerate the thiol-functionalized SBA-15 adsorbent, the nitric acid results inefficient. The difference was attributed to the mercury complexing ability of chloride anion. Four complexing compounds, KBr, KSCN, (NH2)2CS, and HBr were tested for desorbing mercury in regeneration experiments. All agents were able to remove significant amounts of adsorbed mercury, being hydrobromic acid the complexing compound that yields the best results.  相似文献   

15.
SBA-15 was utilized as mesoporous support for the dispersion of vanadium phosphate (VPO) compounds. Loading of SBA-15 with VPO compounds was found to be accompanied by decreasing 29Si MAS NMR signals of Q2 (Si(2Si,2OH)) and Q3 (Si(3Si,1OH)) silicon species, which indicates coverage of the mesoporous support by the guest compounds. The 51V MAS NNR spectra of the activated VPO/SBA-15 catalysts consist of patterns typical for the αII- and β-phases of vanadyl orthophosphate. In the 31P MAS NMR spectra of the activated VPO/SBA-15 catalysts, signals of β-, δ-, and αII-VOPO4 phases could be identified. Upon conversion of n-butane-13C4, a strong decrease of the 31P MAS NMR signals characteristic for the δ-VOPO4 phase occurred, while by 13C MAS NMR spectroscopy the formation of maleic anhydride, carbon monoxide, and carbon dioxide was observed. This finding supports the active role of the δ-VOPO4 phase in the selective oxidation of n-butane on VPO/SBA-15 catalysts.  相似文献   

16.
Novel pyrene functionalized mesoporous core–shell structured silica (denoted as SiO2@mSiO2/Py-Si) was designed and synthesized as a highly selective fluorescent chemosensor for detecting Hg2+ in water. The core–shell structured silica was prepared by a simple sol–gel process through coating SiO2 nanospheres with a layer of ordered mesoporous silica. The surface of outer mesoporous silica shell was then further functionalized by the fluorescent chromophore alkoxysilane modified pyrene (Py-Si). XRD data confirmed that the hexagonal ordered mesoporous structure was preserved after functionalization. The chemosensing material successfully exhibited a remarkable “turn on” response toward Hg2+ over miscellaneous metal ions. A good linear response towards Hg2+ in the concentration range of 10?8–10?4 M was constructed with R2=0.9913. Most importantly, a satisfactory detection limit of 3.4×10?9 g mL?1 (down to ppb level) was obtained, which is 100 times lower than our previous report of covalently grafted Py-OH to the bulk mesoporous silica SBA-15. These results indicated that SiO2@mSiO2/Py-Si can be used as a highly selective and sensitive fluorescence sensor for Hg2+.  相似文献   

17.
The adsorption behaviors of V2O5 nanowires on binary mixed self-assembled monolayers (SAMs) were investigated with variation of the mixing ratio of two differently terminated thiolates on Au. Hydroxyl-covered V2O5 nanowires showed a preferential adsorption on amine (NH2)-terminated thiolates over methyl (CH3)-terminated ones. However, on the binary mixed SAM of NH2- and CH3-terminated thiols, the adsorption behavior did not follow a simple expectation based upon the electrostatic interaction. The total number of adsorbed V2O5 nanowires increased with the mole fraction of NH2-terminated thiolates up to χNH2∼0.5, then it decreased with further increase of χNH2. The height distribution of adsorbed nanowires showed that the relative portion of the agglomerated wires thicker than 3.5 nm to individual wires thinner than 3.5 nm increased up to χNH2∼0.75 and then it decreased with further increase of χNH2. The dispersion of molecules with polar-functional groups as well as the molecular ordering of mixed SAMs is attributed to such adsorption behaviors of V2O5 nanowires.  相似文献   

18.
Among the various green keys, catalysis, especially using heterogeneous catalysts, has been powerfully applied to achieve greener chemical processes. Here are presented nanoporous materials which have mesoporosity with the functional groups on the inner pore walls. The materials were synthesized via a rather greener process, such as microwave synthesis, and over these nanocatalysts some of the green chemical reactions were carried out with high activities and selectivities. Cobalt species has been successfully functionalized and stabilized as a Co(III) complex onto SBA-15 support and proven to be an active catalyst in alkylaromatic oxidation with molecular oxygen, styrene epoxidation with tert-butyl hydroperoxide (TBHP), and allylic oxidation of cycloolefins with H2O2. Short-channeled amino-functionalized SBA-15 catalyst with hexagonal plate morphology was synthesized directly by using microwave synthesis from the co-condensation of aminopropyl triethoxysilane (APTES) and sodium metasilicate under a strong acidic condition. The catalyst showed high catalytic activity in liquid-phase Knoevenagel condensation reactions, due to easy diffusion and mass transfer of substrates into the short mesopore channel. The HO3S–SBA-15 was prepared by grafting of mercaptopropyl trimethoxysilane onto the calcined mesoporous silica surface and subsequently oxidized with H2O2. The resulting catalyst was applied as a Bronsted solid-acid catalyst for the esterification of oleic acid with methanol.  相似文献   

19.
The adsorption of cisplatin and its complexes, cis-[PtCl(NH3)2]+ and cis-[Pt(NH3)2]2+, on a CN-functionalized SiO2(111) surface has been studied by the atom superposition and electron delocalization method. The adiabatic energy curves for the adsorption of the drug and its complexes on the delivery system were considered. Electronic structure and bonding analyses were also performed. The molecules are adsorbed on the functionalized surface resulting in a major absorption of the cis-[Pt(NH3)2]2+ complex. The molecule?Csurface interactions are strengthened due to the incorporation of the CN silane group. The most important bonds occur through Pt?CC, Pt?CN and Pt?CSi interactions. Despite the new interactions, the functionalized carrier maintains its matrix properties after adsorption. The remarkable properties may be attributed to the small electronic structure changes in the Si?CCN groups caused by the interaction with neighboring cisplatin molecules and the enhancement in Pt-bonding interactions due to the surface incorporation of the CN silane groups.  相似文献   

20.
Hexagonally ordered mesoporous silica materials, MCM-41 and SBA-15, have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison, samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV–vis spectroscopy. All preparations contained significant amount of 5–50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity, the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号