首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, ceramic coatings were prepared on biomedical NiTi alloys by micro-arc oxidation (MAO) in constant voltage mode. The current density-time response was recorded during the MAO process. The microstructure, element distribution and phase composition of the coatings prepared at different MAO treatment times were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), thin-film X-ray diffraction (TF-XRD) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coatings in 0.9% NaCl solution was evaluated by the potentiodynamic polarization test. It is found that the coatings become more compact with increasing the MAO treatment time, and the growth rate of coating decreases. The results of TF-XRD, EDS and XPS indicate that the coatings are composed of a large amount of γ-Al2O3 and a little α-Al2O3, TiO2 and Ni2O3. The Ni content of the coatings is about 3 at.%, which is greatly lower than that of NiTi substrate. The bonding strength of coating-substrate is higher than 40 MPa for all the samples in this study. The corrosion resistance of the coatings is about two orders of magnitude higher than that of the uncoated NiTi alloy.  相似文献   

2.
Ceramic thermal protection coatings on Ti6Al4V alloy were achieved by micro-arc oxidation (MAO) in the presence of Co(CH3COO)2. The morphology, crystallographic structure and chemical composition of the coating were characterized by various techniques. The thermal emission of the coating was measured by Fourier transform spectrometer apparatus. The bonding strength between the coating and substrate was studied, together with the thermal shock resistance of the coating. The results indicate that the content of Co in the coating layer significantly affects its thermal emissivity. Higher concentration of Co(CH3COO)2 in electrolytes leads to more Co ions into the coating, which enhances the emissivity of the coating. All the coatings show bonding strength higher than 10 MPa. In addition, the coating remains stable over 40 cycles of thermal shocking. The coating formed at 4 g/L Co(CH3COO)2 displays an average spectral emissivity value more than 0.9 and bonding strength about 10.4 MPa.  相似文献   

3.
Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg2SiO4 and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg2SiO4 was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.  相似文献   

4.
Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy   总被引:3,自引:0,他引:3  
Thick ceramic films over 140 μm were prepared on Al-7% Si alloy by ac microarc oxidation in a silicate electrolyte. The film growth kinetics was determined by an eddy current technique and film growth features in different stages were discussed. The microstructure and composition profiles for different thick films were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Their phase components were determined by X-ray diffraction. The electrochemical corrosion behaviors of bare and coated alloys were evaluated using potentiodynamic polarization curves, and their corrosion morphologies were observed. In the initial stage of oxidation, the growth rate is slow with 0.48 μm/min due to the effect of Si element though the current density is rather high up to 33 A/dm2. After the current density has decreased to a stable value of 11 A/dm2, the film mainly grows towards the interior of alloy. The film with a three-layer structure consists of mullite, γ-Al2O3, α-Al2O3 and amorphous phases. By microarc discharge treatment, the corrosion current of the Al-Si alloy in NaCl solution was significantly reduced. However, a thicker film has to be fabricated in order to obtain high corrosion-resistant film of the Al-Si alloy. Microarc oxidation is an effective method to form an anti-corrosion protective film on Si-containing aluminum alloys.  相似文献   

5.
Preparation and properties of super-hydrophobic coating on magnesium alloy   总被引:3,自引:0,他引:3  
The super-hydrophobic coating was successfully fabricated on the surface of magnesium alloy AZ31 by chemical etching and surface modification. The surface morphologies, compositions, wettability and corrosion resistance of the coating were investigated with SEM, XPS, contact angle measurement and electrochemical method, respectively. It shows that the rough and porous micro-nano-structure was presented on the surface of magnesium alloy, and the contact angle could reach up to 157.3 ± 0.5° with sliding angle smaller than 10°. The super-hydrophobic coating showed a long service life. The results of electrochemical measurements showed that anticorrosion property of magnesium alloy was improved. The super-hydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it finds that only about 10% of the water surface is contacted with the metal substrate and the rest 90% is contacted with the air cushion.  相似文献   

6.
Ceramic coatings with high emission were fabricated on Ti6Al4V alloy by microarc oxidation (MAO) with additive FeSO4 into the electrolyte. The microstructure, chemical composition and chemical state of the coatings were determined by SEM, XRD, EDS and XPS, respectively. The bonding strength between the coating and substrate was studied by tensile strength test, together with the thermal shock resistance of the coating. The results showed that Fe content in the coating layer significantly affect its thermal emissivity. The relative content of Fe in the coatings surface increased at first and then decreased with increasing the concentration of FeSO4 in electrolytes, so does the emissivity of the coatings. The bonding strength became weaker with increasing the concentration of FeSO4. In addition, the coating remains stable over 40 cycles of thermal shocking. The coating formed at 3 g/L FeSO4 demonstrates the highest an average spectral emissivity value around of 0.87, and bonding strength higher than 33 MPa.  相似文献   

7.
The microstructure, composition and corrosion performance of oxide coatings formed on AM60B alloy using microarc oxidation techniques at different waveforms of applied current densities were investigated within this study. It is found that the use of optimizing current density waveforms, i.e. decaying freely current density in the later stage and stepped decreasing current density, significantly improved the microstructure of oxide coatings compared with the constant current density mode, which are connected with changes in behaviors of spark discharges on the surface in oxidation process. The optimal waveform of current density is showed to be decaying freely current density in the later stage, which results in sealing the originally formed large micropores. The optimisation of the microstructure results in a significant improvement of the corrosion resistance of oxide coating.  相似文献   

8.
Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.  相似文献   

9.
NiTi alloy has a unique combination of mechanical properties, shape memory effects and superelastic behavior that makes it attractive for several biomedical applications. In recent years, concerns about its biocompatibility have been aroused due to the toxic or side effect of released nickel ions, which restricts its application as an implant material. Bulk ultrafine-grained Ni50.8Ti49.2 alloy (UFG NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study. A homogeneous and smooth SrO-SiO2-TiO2 sol-gel coating without cracks was fabricated on its surface by dip-coating method with the aim of increasing its corrosion resistance and cytocompatibility. Electrochemical tests in simulated body fluid (SBF) showed that the pitting corrosion potential of UFG NiTi was increased from 393 mV(SCE) to 1800 mV(SCE) after coated with SrO-SiO2-TiO2 film and the corrosion current density decreased from 3.41 μA/cm2 to 0.629 μA/cm2. Meanwhile, the sol-gel coating significantly decreased the release of nickel ions of UFG NiTi when soaked in SBF. UFG NiTi with SrO-SiO2-TiO2 sol-gel coating exhibited enhanced osteoblast-like cells attachment, spreading and proliferation compared with UFG NiTi without coating and CG NiTi.  相似文献   

10.
NiTi samples were anodized in the non-sparking regime using AC voltage in a solution containing calcium and phosphate ions (solution Ca-P). The as-anodized samples were subsequently treated hydrothermally in water (sample A-W-NiTi) or in solution Ca-P (sample A-CaP-NiTi). Thin-film X-ray diffractometry (TF-XRD) analysis confirmed the existence of anatase in the hydrothermally treated samples, but not in the as-anodized sample, while hydroxyapatite (HA) was detected only in sample A-CaP-NiTi. Cross-sectional micrograph by scanning-electron microscopy (SEM) revealed that the thickness of the modified surface layer formed on sample A-CaP-NiTi was ∼200 nm. X-ray photoelectron spectroscopy (XPS) analysis showed that the Ni concentrations at the surface of sample A-W-NiTi and sample A-CaP-NiTi were in the order of 0.4 and 0.3 at.%, respectively, which were about an order of magnitude lower than that for bare NiTi. Both Ca and P were present in the surface layer on as-anodized NiTi and sample A-CaP-NiTi, but negligible on sample A-W-NiTi, as determined from XPS composition depth profiling. Immersion tests in a conventional simulated body fluid (SBF) of the Kokubo type to study apatite-forming ability showed that growth of apatite was induced on A-W-NiTi and much more abundantly on A-CaP-NiTi, but not on bare NiTi and as-anodized NiTi, suggesting that the presence of anatase and HA is favorable for apatite growth. The apatite-forming ability of the samples in the present study may be ranked in ascending order as: bare NiTi < As-anodized NiTi < A-W-NiTi < A-CaP-NiTi. Polarization tests in Hanks’ solution recorded significant increase in corrosion resistance due to anodization and further increase was obtained via hydrothermal treatment. The present study thus shows that anodization followed by hydrothermal treatment is a simple method to form a potentially bioactive and at the same time corrosion resistant surface layer on NiTi.  相似文献   

11.
Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.  相似文献   

12.
NiTi alloys are attractive materials that are used for medicine, however, Ni-release may cause allergic reactions in an organism. The Ni-release rate is strongly affected by the surface state of the NiTi alloy that is mainly determined by its processing route. In this study, a NiTi shape memory alloy (50.9 at.% Ni) was heat-treated by several regimes simulating the shape setting procedure, the last step in the manufacture of implants. Heating temperatures were between 500 and 550 °C and durations from 5 to 10 min. Heat treatments were performed in air at normal and low pressure and in a salt bath. The purpose of the treatments was to obtain and compare different surface states of the Ni-Ti alloy. The surface state and chemistry of heat-treated samples were investigated by electron microscopy, X-ray photoelectron spectroscopy and Raman spectrometry. The amount of nickel released into a model physiological solution of pH 2 and into concentrated HCl was taken as a measure of the corrosion rate. It was found that the heat treatments produced surface TiO2 layers measuring 15-50 nm in thickness that were depleted in nickel. The sample covered by the 15-nm thick oxide that was treated at 500 °C/5 min in a low pressure air showed the best corrosion performance in terms of Ni-release. As the oxide thickness increased, due to either temperature or oxygen activity change, Ni-release into the physiological solution accelerated. This finding is discussed in relation to the internal structure of the oxide layers.  相似文献   

13.
A Si-incorporated bioactive ceramic film was prepared on pure titanium by plasma electrolytic oxidation (PEO) in a new bath containing Ca2+, H2PO4 and SiO32−. The film was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS). The apatite-induced ability of PEO film was evaluated by soaking in a simulated body fluid (SBF) for various periods. The results showed that Si-incorporated PEO film present a porous microstructure, the pore size is around 1–5 μm. The film mainly consists of anatase and rutile and a small amount of CaHPO4 and CaO, besides, bioactive compounds such as CaSiO3 and SiO2, also exist in the Si-incorporated PEO film. After immersion in SBF for 28 days, not only the surface layer but also the pores inside the Si-incorporated PEO film were completely filled by apatite crystals, whereas on the surface of a benchmark PEO film free of Si just present small piles of apatite crystals. Silicon incorporated into the PEO film provided more heterogeneous nucleation sites for apatite deposition and hence increased remarkably bioactivity of the PEO film.  相似文献   

14.
Microarc oxidation coatings on AM60B magnesium alloy were prepared in silicate and phosphate electrolytes. Structure, composition, mechanical property, tribological, and corrosion resistant characteristics of the coatings was studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and microhardness analyses, and by ball-on-disc friction and potentiodynamic corrosion testing. It is found that the coating produced from the silicate electrolyte is compact and uniform and is mainly composed of MgO and forsterite Mg2SiO4 phases, while the one formed in phosphate electrolyte is relatively porous and is mainly composed of MgO phase. The thick coating produced from a silicate electrolyte possesses a high hardness and provides a low wear rate (3.55 × 10−5 mm3/Nm) but a high friction coefficient against Si3N4 ball. A relatively low hardness and friction coefficient while a high wear rate (8.65 × 10−5 mm3/Nm) is recorded during the testing of the thick coating produced from a phosphate electrolyte. Both of these types of coatings provide effective protection for the corrosion resistance compared with the uncoated magnesium alloy. The coating prepared from the silicate electrolyte demonstrates better corrosion behavior due to the compacter microstructure.  相似文献   

15.
Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, and favorable biocom- patibility. However, in some applications, com- ponents made of titanium or titanium alloys exhibit poor wear resistance under stationary or dynamic loading as well as contact corrosion manifested by the relatively negative standard electrode potential (-1.63 V ) . In order to improve the surface properties of titanium and its alloys, several techniques such as PVD ( physical vapor deposition ) /CVD (chemical vapor deposition ) coatings,  相似文献   

16.
钛合金微弧氧化过程中电学参量的特性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用自制的数据采集系统研究了恒定电压下TC4钛合金微弧氧化(MAO)过程中有关电学参量随处理时间的变化规律. 结果表明,通电回路中的阴极和阳极峰值电流随处理时间的变化明显分为4个阶段;膜厚度随处理时间的变化明显分为3个阶段;氧化膜的动态正、反向电阻和动态正、反向电阻率也随处理时间分阶段变化. MAO过程中,各时刻的动态正、反向电阻值不同,一般情况下,动态正向电阻大于反向电阻. 对不同处理时间样品的扫描电子显微镜分析表明,MAO膜呈多孔结构并随处理时间变化.  相似文献   

17.
为了提高钛合金表面微弧氧化层在海洋环境中的抗腐蚀和耐磨损性能,在硅酸盐系电解液中添加不同浓度粒径在1 μm左右的TaC微粒,制备了 TaC掺杂微弧氧化层.通过扫描电子显微镜、能谱仪和X射线光电子能谱仪等对微弧氧化层的形貌、元素组成及其化学状态进行表征与分析,并对比评价了钛合金表面TaC掺杂微弧氧化层的厚度、表面粗糙度、...  相似文献   

18.
An investigation of pulsed laser cutting of titanium alloy sheet   总被引:3,自引:1,他引:2  
Subsequent welding requirement calls for high-quality laser cut surfaces in the laser cutting of bladed ring parts for aeroengines. This paper presents pulsed laser cutting of titanium alloy sheet and investigates the influences of laser cutting parameters on laser cut quality factors including heat-affected zone (HAZ), surface morphology and corrosion resistance. The thickness of HAZ lasers is studied in detail as a function of laser cutting parameters. For different assist gases the surface morphology and corrosion resistance show great differences. In comparison with air- and nitrogen-assisted laser cutting, argon-assisted laser cutting comes with unaffected surface quality and is suitable for laser cutting with subsequent welding requirement.  相似文献   

19.
An oxide coating with nanostructure was prepared by micro-arc oxidation (MAO) on a biomedical Ti-24Nb-4Zr-7.9Sn alloy. Chemical composition of the coating mainly includes O, Ti, Nb, Ca, P, Na, Zr and Sn, where the ratio of Ca/P is about 1.6. Ti, Nb, Zr and Sn participate in the oxidation to form TO2, Nb2O5, ZrO2 and SnO2 nanocrystals, while Ca, P and Na are present in the form of amorphous phases. After alkali treatment, the surface of the MAO coating becomes rough, and Na concentration increases remarkably while P disappears basically. The alkali treated coating shows better apatite forming ability than the untreated one, as evidenced by apatite formation after SBF immersion for 7 days. The improvement of apatite forming ability of the modified coating is attributed to the formation of a sodium titanate layer and numbers of submicron-scale network flakes. The enhancement of the surface wettability of the alkali treated coating also plays an important role in promoting the apatite forming ability.  相似文献   

20.
The influence of the surface roughness of Mg alloys on the electrical properties and corrosion resistance of oxide layers obtained by plasma electrolytic oxidation (PEO) were studied. The leakage current in the insulating oxide layer was enhanced by increasing the surface roughness, which is a favorable characteristic for the material when applied to hand-held electronic devices. The variation of corrosion resistance with surface roughness was also investigated. The corrosion resistance was degraded by the increasing surface roughness, which was confirmed with DC polarization and impedance spectroscopy. Pitting corrosion on the passive oxide layer was also analyzed with a salt spray test, which showed that the number of pits was not affected by the surface roughness when the spray time reached 96 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号