首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric pressure chemical vapor deposition (APCVD) of TiO2 thin films has been achieved onto glass and onto ITO-coated glass substrates, from the reaction of TiCl4 with ethyl acetate (EtOAc). The effect of the synthesis temperature on the optical, structural and electrochemical properties was studied through spectral transmittance, X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) measurements. It was established that the TiO2 films deposited onto glass substrate, at temperatures greater than 400 °C grown with rutile type tetragonal structure, whereas the TiO2 films deposited onto ITO-coated glass substrate grown with anatase type structure. EIS was applied as suitable method to determine the charge transfer resistance in the electrolyte/TiO2 interface, typically found in dye-sensitized solar cells.  相似文献   

2.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.  相似文献   

3.
Previous studies suggest that granular interfaces induce a natural and persistent super-hydrophilicity in TiO2-SiO2 composite thin films deposited by sol-gel route. This effect enables to consider self-cleaning applications that do not require a permanent UV exposure, whereas such a permanent exposure is necessary for pure TiO2 films. In this study, TiO2-SiO2 composite thin films have been deposited from a TiO2 anatase crystalline suspension and different SiO2 polymeric sols. Wettability studies show that a suitable control of the TiO2-SiO2 mixed sol formulations noticeably enhances persistence of the natural super-hydrophilicity in composite films. It is shown that, beside granular interface effects, modifications in the composite film morphologies can noticeably influence wettability properties.  相似文献   

4.
Nb-doped TiO2 (TNO) thin films were prepared by sol-gel dip-coating method with Nb content in a wide range of 0-20 at.%. The prepared films were preheated at 400 °C and then undertaken by two different post-annealing processes: (a) three times vacuum annealing and (b) multi-round annealing. The designed multi-round annealing was shown to be an effective way to improve the conductive properties of the films, compared to the traditional vacuum annealing process. The minimum resistivity reached approximately 0.5 Ω cm with Nb doping concentration around 12 at.%, and the carrier density increased with Nb-doping concentration until the critical point of 12 at.%, which might be the optimal doping content for our TNO films prepared by sol-gel method.  相似文献   

5.
Porous TiO2 films were deposited on SiO2 pre-coated glass-slides by sol-gel method using octadecylamine (ODA) as template. The amount of ODA in the sol played an important role on the physicochemical properties and photocatalytic performance of the TiO2 films. The films prepared at different conditions were all composed of anatase titanium dioxide crystals, and TiO2 crystalline size got larger with increasing ODA amount. The maximum specific surface area of 41.5 m2/g was obtained for TiO2 powders prepared from titanium sol containing 2.0 g ODA. Methyl orange degradation rate was enhanced along with increasing ODA amount and reached the maximal value at 2.0 g addition of ODA. After 40 min of UV-light irradiation, methyl orange degradation rate reached 30.5% on the porous film, which was about 10% higher than that on the smooth film. Porous TiO2 film showed almost constant activity with slight decrease from 30.5% to 28.5% after 4 times of recycles.  相似文献   

6.
Transparent and conducting TiO2/Au/TiO2 (TAuT) films were deposited by reactive magnetron sputtering on polycarbonate substrates to investigate the effect of the Au interlayer on the optical, electrical, and structural properties of the films. In TAuT films, the Au interlayer thickness was kept at 5 nm. Although total thickness was maintained at 100 nm, the stack structure was varied as 50/5/45, 70/5/25, and 90/5/5 nm.In XRD pattern, the intermediate Au films were crystallized, while all TAuT films did not show any diffraction peaks for TiO2 films with regardless of stack structure. The optical and electrical properties were dependent on the stack structure of the films. The lowest sheet resistance of 23 Ω/□ and highest optical transmittance of 76% at 550 nm were obtained from TiO2 90 nm/Au 5 nm/TiO2 5 nm films. The work function was dependent on the film stack. The highest work function (4.8 eV) was observed with the TiO2 90 nm/Au 5 nm/TiO2 5 nm film stack. The TAuT film stack of TiO2 90 nm/Au 5 nm/TiO2 5 nm films is an optimized stack that may be an alternative candidate for transparent electrodes in flat panel displays.  相似文献   

7.
Fabrication of TiO2 nanotube arrays (TNAs) with through-hole morphology is practical significance to enhance the photocatalytic activity of TNAs, as well as expanding their applications. In present work, open-ended TNAs are synthesized on a conductive Au layer by anodizing a thermally evaporated Ti/Au bilayer film. In the anodizing process, the upper Ti layer is transformed into well-aligned TNAs. The barrier layer under the growing TNAs ultimately touches the Au layer and is completely dissolved by the electrochemical etching. In order to avoid the bubble disruption of TNAs caused by the water electrolysis after the Au layer is exposed to the electrolyte, a specific non-aqueous electrolyte is used. The XRD results reveal that the as-formed open-ended TNAs are amorphous and can be transformed into anatase by annealing at 350 °C.  相似文献   

8.
Daeil Kim 《Optics Communications》2010,283(9):1792-1794
Au-intermediate TiO2/Au/TiO2 (TAT) multilayer films were deposited by RF magnetron sputtering onto glass substrates. Changes in the optical and electrical properties of the films were investigated with respect to the thickness of the Au interlayer.The observed optical and electrical properties were dependent on the thickness of the Au interlayer. The resistivity decreased to 3.3 × 10−4 Ω cm for TiO2 films with a 20 nm-thick Au interlayer and the optical transmittance was also influenced by the Au interlayer. Although optical transmittance deteriorated as Au thickness increased, TiO2 films with a 5 nm-thick Au interlayer showed a relatively high optical transmittance of 80% at a wavelength of 550 nm. In addition, since a TAT film with a 5 nm-thick Au interlayer showed a relatively high work function value, it is an alternative candidate for use as a transparent anode in OLEDs and flat panel displays.  相似文献   

9.
A set of nanocomposite thin films consisting of Au nanoclusters dispersed in a TiO2 dielectric matrix was deposited by reactive magnetron sputtering, and subjected to thermal annealing in vacuum, at temperatures ranging from 200 to 800 °C. The obtained results show that the structure and the size of Au clusters, together with the matrix crystallinity, changed as a result of the annealing, and were shown to be able to change the optical properties of the films and keeping good mechanical properties, opening thus a wide number of possible applications. The crystallization of the gold nanoclusters induced by the annealing was followed by a systematic change in the overall coating behaviour, namely the appearance of surface plasmon resonance (SPR) behaviour. This effect enables to tailor the thin films reflectivity, absorbance and colour coordinates, contributing to the importance of this thin film system. The different attained optical characteristics (reflectance values ranging from interference to metallic-like behaviours and colour varying for interference rainbow-like to several tones of red-brownish), associated with a reasonable mechanical resistance of the coatings (good adhesion to different substrates and hardness values ranging from 5 to 7.5 GPa), induce the possibility to use this film system in a wide range of decorative applications.  相似文献   

10.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

11.
In this work, TiO2-SiO2-In2O3 composite thin films on glass substrates were prepared by the sol-gel dip coating process. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the structural and chemical properties of the films. UV-vis spectrophotometer was used to measure the transmittance spectra of thin films. The water contact angle (WCA) of thin films during UV/vis irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that fabrication of composite film has a significant effect on transmittance and superhydrophilicity of TiO2 films.  相似文献   

12.
This work presents the annealing temperature effect on the properties of mercury (Hg)-doped titanium dioxide (TiO2). Thin films and polycrystalline powders have been prepared by sol-gel process. The structure, surface morphology and optical properties, as a function of the annealing temperature, have been studied by atomic force microscopy (AFM), Raman, reflectance and ellipsometric spectroscopies. In order to determine the transformation points, we have analyzed the xerogel-obtained powder by differential scanning calorimetry (DSC). Raman spectroscopy shows the crystalline anatase and rutile phases for the films annealed at 400 °C and 1000 °C respectively. The AFM surface morphology results indicate that the particle size increases from 14 to 57 nm by increasing the annealing temperature. The complex index and the optical band gap (Eg) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreases by increasing the annealing temperature.  相似文献   

13.
In this work TiO2 thin films were modified with gold/palladium (Au/Pd) bimetallic paticles by sputtering method. TiO2 films were deposited on ITO (SnO2:In) by Doctor Blade method and post-anneling. The properties of the films were studied through measurements of XRD (X-ray diffraction) and AFM (atomic force microscopy). The degradation of methylene blue was studied by UV-irradiated pure TiO2 and Au/Pd-modified TiO2 in aqueous solution. Langmuir-Hinshelwood model was used to obtain kinetic information. Photocatalytic study indicated that Au/Pd-modified TiO2 photocatalytic activity was better than TiO2 pure; the best half-life time for Au/Pd-modified TiO2 in photodegradation was 2.8 times smaller than TiO2 pure; finally the efficiency in methylene blue photodegradation was improved from 23% to 43% when Au/Pd-modified TiO2 films were used.  相似文献   

14.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

15.
The surface of anatase TiO2 nanoparticles was modified by xylene using soxhlet extractor. The photoluminescence (PL) of the modified nanoparticles was investigated. A stable and strong blue luminescence peak at 420 nm can be observed, and the intensity of the PL peak increases with the increase of the extraction time.  相似文献   

16.
Thin films of pure TiO2 have been prepared using both spin-coating and sputter-deposition techniques on sapphire and quartz substrates. The structural characteristics of the films have been investigated in detail using Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). When annealed in vacuum, all films demonstrate room temperature ferromagnetism, while the air-annealed samples show much smaller, often negligible, magnetic moments. The magnetization of the vacuum-annealed sputtered samples depends on film thickness, with the volume magnetization decreasing monotonically with increasing thickness. Furthermore, the magnetization per unit area also decreases slightly with increasing film thickness. These results suggest that ferromagnetism in the vacuum-annealed TiO2 films is mediated by surface defects or interfacial effects, but does not arise from stoichiometric crystalline TiO2.  相似文献   

17.
Al2O3/TiO2 bi-layer films on aluminium substrates have been obtained by combining anodising and TiO2 sol-gel deposition. The reflectivity enhancing properties of these Al2O3/TiO2 bi-layer films have been studied in relation to the refractive index and thickness of the Al2O3 and TiO2 single-layers. It is shown that a significant improvement of reflectivity can be achieved by a proper optimisation of the bi-layer elaboration parameters.  相似文献   

18.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

19.
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed.  相似文献   

20.
In the present study TiO2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号