首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ZnS films have been deposited on glass substrates by close-spaced evaporation (CSE) technique. The films were grown at different temperatures in the range, 200-350 °C. The layers have been characterized with X-ray diffractometer (XRD), atomic force microscope (AFM), energy dispersive analysis of X-rays (EDAX) and optical spectrophotometer to evaluate the quality of the layers for photovoltaic applications. The studies showed that the optimum substrate temperature for the growth of ZnS layers was 300 °C. The films grown at these temperatures exhibited cubic structure with nearly stoichiometric composition. The AFM data revealed that the films had nano-sized grains with a grain size of ∼40 nm. The optical studies exhibited direct allowed transition with an energy band gap of 3.61 eV. The other structural and optical parameters such as lattice stress, dislocation density, refractive index and extinction coefficient were also evaluated. The temperature-dependent conductivity measured in the range, 303-523 K showed a change in the conduction mechanism at 120 °C. The activation energy values evaluated using the temperature dependence of electrical conductivity are 7 and 29 meV at low and high temperature regions, respectively.  相似文献   

2.
In this paper, c-axis oriented AlN films were prepared on sapphire substrate by RF reactive magnetron sputtering at various deposition temperatures (30–700 °C). The influences of deposition temperature on the chemical composition, crystalline structure and surface morphology of the AlN films were systematically investigated. The as-deposited films were characterized by X-ray photoelectron spectroscopy (XPS), two-dimensional X-ray diffraction (2D-XRD) and atomic force microscopy (AFM). The experimental results show that it can be successfully grown for high-purity and near-stoichiometric (Al/N = 1.12:1) AlN films except for the segregation of a few oxygen impurities exist in the form of Al–O bonding. The chemical composition of as-deposited films is almost independent of substrate temperature in the range of 30–700 °C. However, the crystalline structure and surface morphology of the deposited AlN films are strongly influenced by the deposition temperature. The optimum deposition temperature is 300 °C, giving a good compromise between crystalline structure and surface morphology to grow AlN films.  相似文献   

3.
HfO2 films were grown by atomic layer deposition from HfCl4 and H2O on Si(1 0 0), Si(1 1 1) and amorphous SiO2 substrates at 180-750 °C and the effect of deposition temperature and film thickness on the growth rate and optical properties of the film material was studied. Crystallization, texture development and surface roughening were demonstrated to result in a noticeable growth rate increase with increasing film thickness. Highest surface roughness values were determined for the films deposited at 350-450 °C on all substrates used. The density of the film material increased with the concentration of crystalline phase but, within experimental uncertainty, was independent of orientation and sizes of crystallites in polycrystalline films. Refractive index increased with the material density. In addition, the refractive index values that were calculated from the transmission spectra depended on the surface roughness and crystallite sizes because the light scattering, which directly influenced the extinction coefficient, caused also a decrease of the refractive index determined in this way.  相似文献   

4.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

5.
The epitaxial growth of doped ZnO films is of great technological importance. Present paper reports a detailed investigation of Sc-doped ZnO films grown on (1 0 0) silicon p-type substrates. The films were deposited by sol-gel technique using zinc acetate dihydrate as precursor, 2-methoxyethanol as solvent and monoethanolamine (MEA) as a stabilizer. Scandium was introduced as dopant in the solution by taking 0.5 wt%1 of scandium nitrate hexahydrate. The effect of annealing on structural and photoluminescence properties of nano-textured Sc-doped films was investigated in the temperature range of 300-550 °C. Structural investigations were carried out using X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.21° are obtained at an annealing temperature of 400 °C. The SEM images of ZnO:Sc films have revealed that coalescence of ZnO grains occurs due to annealing. Ostwald ripening was found to be the dominant mass transport mechanism in the coalescence process. A surface roughness of 4.7 nm and packing density of 0.93 were observed for the films annealed at 400 °C. Room temperature photoluminescence (PL) measurements of ZnO:Sc films annealed at 400 °C showed ultraviolet peak at about (382 nm) with FWHM of 141 meV, which are comparable to those found in high-quality ZnO films. The films annealed below or above 400 °C exhibited green emission as well. The presence of green emission has been correlated with the structural changes due to annealing. Reflection high energy electron diffraction pattern confirmed the nearly epitaxial growth of the films.  相似文献   

6.
TiO2, which is high in refractive index and dielectric constant, plays an important role in the fields of optics and electronics. In this work, TiO2 films were prepared on glass substrates by the technique of ion beam assisted electron beam evaporation. The films were deposited at 50, 150 and 300 °C, respectively. Then the as-deposited TiO2 films were annealed at 450 °C for 1 h in vacuum atmosphere. Structures and optical properties of TiO2 films were characterized by XRD, SEM, ellipsometry and spectrophotometer. As a result, the structure and the refractive index of films were improved by both the annealing and the increasing of the deposition temperature. The UV-vis transmittance spectra also confirmed that the deposition temperature has a significant effect on the transparency of the thin films. The highest transparency over the visible wavelength region of spectra was obtained at the deposition temperature of 300 °C. The allowed direct band gap at the deposition temperature ranging from 50 to 300 °C was estimated to be in the range from 3.81 to 3.92 eV.  相似文献   

7.
Mirror-like and pit-free non-polar a-plane (1 1 −2 0) GaN films are grown on r-plane (1 −1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.  相似文献   

8.
Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 °C and subsequently annealed at 700 °C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films’ microstructure and texture.  相似文献   

9.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

10.
ZnSe epilayers were grown on GaAs (1 0 0) substrates using MBE. The native contamination (oxide and carbon) was removed in situ from the substrate surfaces by conventional thermal cleaning and by exposure to atomic hydrogen. A maximum substrate temperature of 600 °C was required for the thermal cleaning process, while a substrate temperature of 450 °C was sufficient to clean the substrate using hydrogen. ZnSe epilayers were also grown on As capped GaAs epilayers, which were decapped at a maximum temperature of 350 °C. SIMS profiles showed the existence of oxygen at the interface for all of the substrate preparation methods. The oxygen surface coverage at the interface was found to be 0.03% for the atomic hydrogen cleaned substrate and 0.7% for the thermally cleaned substrate.  相似文献   

11.
High temperature GaN layers have been grown on Si (1 1 1) substrate by metalorganic vapor phase epitaxy (MOVPE). AlN was used as a buffer layer and studied as a function of thickness and growth temperature. The growth was monitored by in situ laser reflectometry. High resolution X-ray diffraction (HRXRD) revealed that optimized monocrystalline GaN was obtained for a 40 nm AlN grown at 1080 °C. This is in good agreement with the results of morphological study by scanning electron microscopy (SEM) and also confirmed by atomic force microscopy (AFM) observations. The best morphology of AlN with columnar structure and lower rms surface roughness is greatly advantageous to the coalescence of the GaN epilayer. Symmetric and asymmetric GaN reflections were combined for twist and stress measurements in monocrystalline GaN. It was found that mosaicity and biaxial tensile stress are still high in 1.7 μm GaN. Curvature radius measurement was also done and correlated to the cracks observations over the GaN surface.  相似文献   

12.
ZnO thin films grown on Si(1 1 1) substrates by using atomic layer deposition (ALD) were annealed at the temperatures ranging from 300 to 500 °C. The X-ray diffraction (XRD) results show that the annealed ZnO thin films are highly (0 0 2)-oriented, indicating a well ordered microstructure. The film surface examined by the atomic force microscopy (AFM), however, indicated that the roughness increases with increasing annealing temperature. The photoluminescence (PL) spectrum showed that the intensity of UV emission was strongest for films annealed at 500 °C. The mechanical properties of the resultant ZnO thin films investigated by nanoindentation reveal that the hardness decreases from 9.2 GPa to 7.2 GPa for films annealed at 300 °C and 500 °C, respectively. On the other hand, the Young's modulus for the former is 168.6 GPa as compared to a value of 139.5 GPa for the latter. Moreover, the relationship between the hardness and film grain size appear to follow closely with the Hall-Petch equation.  相似文献   

13.
A pulsed DC reactive ion beam sputtering system has been used to synthesize aluminium nitride (AlN) thin films at room temperature by reactive sputtering. After systematic study of the processing variables, high-quality polycrystalline films with preferred c-axis orientation have been grown successfully on silicon and Au/Si substrates with an Al target under a N2/(N2 + Ar) gas flow ratio of 55%, 2 mTorr processing pressure and keeping the temperature of the substrate holder at room temperature. The crystalline quality of the AlN layer as well as the influence of the substrate crystallography on the AlN orientation has been characterized by high-resolution X-ray diffraction (HR-XRD). Best ω-FWHM (Full Width at Half Maximum) values of the (0 0 0 2) reflection rocking curve in the 1 μm thick AlN layers are 1.3°. Atomic Force Microscopy (AFM) measurements have been used to study the surface morphology of the AlN layer and Transmission Electron Microscopy (TEM) measurements to investigate the AlN/substrate interaction. AlN grew off-axis from the Si substrate but on-axis to the surface normal. When the AlN thin film is deposited on top of an Au layer, it grows along the [0 0 0 1] direction but showing a two-domain structure with two in-plane orientations rotated 30° between them.  相似文献   

14.
Phosphorus-doped n-type homoepitaxial diamond films have been successfully grown at high substrate temperatures (>1000 °C) on high-pressure/high-temperature-synthesized type-Ib single-crystalline diamond (1 0 0) substrates, by using a conventional microwave plasma chemical-vapor-deposition (CVD) system with high power densities. The deposition system employed in this work had an easily exchangeable 36 mm inner-diameter quartz-tube growth chamber. The homoepitaxial diamond films thus grown were characterized by means of Hall-effect measurements with an AC magnetic field, atomic force microscope observations and secondary ion mass spectrometry techniques. The dependences of the substrate temperature (≤1300 °C) and the P/C ratio in the source gas (≤9900 ppm) on the specimen features were investigated. The optimum substrate temperature deduced was ≈1160 °C, which was also applicable to the CVD growth of undoped homoepitaxial diamond layers. The n-type conductions with an activation energy ≈0.6 eV were observed for the specimens with amounts of the P atoms incorporated to ≈1.5 × 1018 cm−3 whereas the doping efficiencies changed from ≈0.06% to ≈0.92% with the growth condition. Possible origins for these results are discussed in relation to the growth mechanism.  相似文献   

15.
Structural and optical properties of Sc-doped ZnO films grown by RF magnetron sputtering at different substrate temperatures were investigated. All the ZnO:Sc films are polycrystalline with the hexagonal wurtzite structure. X-ray diffraction patterns of the films showed that the doped-films have (0 0 2) as preferred orientation when the deposition temperature was increased from 250 °C to 300 °C. All the films are in a state of compressive stress, whereas the stress decreases gradually with increasing substrate temperature. The average transmittance of these films was above 90% in the wavelength range from 400 nm to 800 nm. The optical band gap of these films was determined. The optical constants of these films were determined using transmittance and reflectance spectra.  相似文献   

16.
In this study, ZnO thin films were fabricated using the rf magnetron sputtering method and their piezoelectrical and optical characteristics were investigated for various substrate temperatures. The ZnO thin film has the largest crystallization orientation for the (0 0 2) peak and the smallest FWHM value of 0.56° at a substrate temperature of 200 °C. The surface morphology shows a relatively dense surface structure at 200 °C compared to the other substrate temperatures. The surface roughness shows the smallest of 1.6 nm at a substrate temperature of 200 °C. The piezoelectric constant of the ZnO thin film measured using the pneumatic loading method (PLM) has a maximum value of 11.9 pC/N at a substrate temperature of 200 °C. The transmittance of the ZnO thin film measured using spectrophotometry with various substrate temperatures ranged from 75 to 93% in the visible light region. By fitting the refractive index from the transmittance to the Sellmeir dispersion relation, we can predict the refractive index of the ZnO thin film according to the wavelength. In the visible light range, the refraction index of the ZnO thin film deposited at a substrate temperature of 200 °C is the range of 1.88-2.08.  相似文献   

17.
Aluminum-doped zinc oxide (AZO) thin films have been deposited by electron beam evaporation technique on glass substrates. The structural, electrical and optical properties of AZO films have been investigated as a function of annealing temperature. It was observed that the optical properties such as transmittance, reflectance, optical band gap and refractive index of AZO films were strongly affected by annealing temperature. The transmittance values of 84% in the visible region and 97% in the NIR region were obtained for AZO film annealed at 475 °C. The room temperature electrical resistivity of 4.6×10−3 Ω cm has been obtained at the same temperature of annealing. It was found that the calculated refractive index has been affected by the packing density of the thin films, whereas, the high annealing temperature gave rise to improve the homogeneity of the films. The single-oscillator model was used to analyze the optical parameters such as the oscillator and dispersion energies.  相似文献   

18.
The structure and optical properties of AlN thin films doped with Cr atoms were studied by X-ray diffractometry, Fourier transform infrared spectroscopy and spectroscopic ellipsometry analyses. The films were synthesized by pulsed laser deposition from an AlN:Cr (10% Cr) target onto Si(1 0 0) wafers in vacuum at residual pressure of 10−3 Pa or in nitrogen at a dynamic pressure of 0.1 Pa. The study of the XRD patterns revealed that both phases co-existed in the synthesized films and that the amorphous one was prevalent. Two different amorphous matrices, i.e. two types of chemical bond arrangements, were found in films deposited at 0.1 Pa N2. By difference, deposition in vacuum resulted in the coexistence of hexagonal and cubic crystallites embedded into an amorphous matrix. The introduction of Cr atoms into the AlN lattice causes a broadening of the IR spectrum along with the shift toward higher wavenumbers of the characteristic Al-N bands at 2351 cm−1 and 665 cm−1, respectively. This was related to the generation of a compressive stress inside films. In comparison to the optical constants of pure AlN films, the synthesized AlN:Cr films exhibited a smaller refractive index and showed a weak absorption throughout the 300-800 nm spectral region, characteristic to amorphous AlN structure.  相似文献   

19.
The electrical as well as the structural properties of La2O3 thin films on TiN substrates were investigated. Amorphous stoichiometric La2O3 thin films were grown at 300 °C via atomic layer deposition technique by using lanthanum 2,2,6,6-tetramethyl-3,5-heptanedione [La(TMHD)3] and H2O as precursors. Post-annealing of the grown film induced dramatic changes in structural and the electrical properties. Crystalline phases of the La2O3 film emerged with the increase of the post-annealing temperature. Metal-insulator-metal (MIM) capacitor was fabricated to measure the electrical properties of the grown film. The dielectric constant of the La2O3 thin films increased with annealing temperature to reach the value of 17.3 at 500 °C. The leakage current density of the film post-annealed at 400 °C was estimated to be 2.78 × 10−10 and 2.1 × 10−8 A/cm2 at ±1 V, respectively.  相似文献   

20.
Structural, electrical, and optical properties of atomic layer-controlled Al-doped ZnO (ZnO:Al) films grown by atomic layer deposition (ALD) on glass substrates were characterized at various growth temperatures for use as transparent electrodes. The Al atomic content in ZnO:Al films increased due to the reduced ZnO film growth rate with increasing temperature. The preferred orientation of ZnO:Al films was changed, and the optimum condition for best crystallinity was identified by varying the growth temperature. Furthermore, the carrier concentration of free electron was increased by substituting the Zn sites with Al atoms in the crystal, resulting from monolayer growth based on alternate self-limiting surface chemical reactions. The electrical resistivity of ZnO:Al film grown by ALD at 225 °C reached the lowest value of 8.45 × 10−4 Ω cm, with a carrier mobility of 9.00 cm2 V−1 s−1 and optical transmittance of ∼93%. This result demonstrates that ZnO:Al films grown by ALD possess excellent potential for applications in electronic devices and displays as transparent electrodes and surface passivation layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号