首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-cost one-step fabrication of superhydrophobic surface on Al alloy   总被引:1,自引:0,他引:1  
A stable superhydrophobicity on aluminum alloy has been rendered by a low-cost one-step method, simply immersing the substrates in a solution containing hydrochloric acid and fatty acid molecules. The formation mechanism of such a surface was proposed by SEM morphology and EDS results. The resulting surface shows superhydrophobicity and low adhesion. This low cost and facile process provides a real feasible avenue for large-scale production of superhydrophobic surfaces.  相似文献   

2.
A pyramid/nanowire binary structure is fabricated on the silicon surface via a NaOH anisotropic etching technique followed by a silver-catalyzed chemical etching process. The silicon surface shows a stable superhydrophobicity with high contact angle of 162° and small sliding angle less than 2° after being modified with octadecyltrichlorosilane (ODTS). The binary roughness of pyramid/nanowire structure presents a stable composite interface of silicon-air-water and responsible for the superhydrophobicity of silicon surface.  相似文献   

3.
Mg micro/nanoscale materials with sphere-like morphologies are prepared via a vapor-transport deposition process. The structure and morphology of the as-prepared products are characterized by powder X-ray diffraction and scanning electron microscopy. Vapor-liquid-solid mechanism is proposed to explain the formation of Mg micro/nanospheres on the basis of the experimental results. Supported by the National Basic Research Program of China (Grant No. 2005CB623607)  相似文献   

4.
吴兵兵  吴化平  张征  董晨晨  柴国钟 《物理学报》2015,64(17):176801-176801
自然界中的微纳复合结构超疏水表面由于其独特的润湿性质引起了人们的广泛关注, 大量实验研究表明了仿生人工微纳复合结构表面润湿性能的优越性, 然而液滴在微纳复合结构表面的润湿状态和转型过程的理论研究还并不完善. 本文首先用热力学方法分析了液滴在微纳复合结构表面可能存在的所有状态(四种稳定润湿状态和五种亚稳态到稳定态转型中的过渡态), 推导出了相应的能量表达式及表观接触角方程; 基于最小能量原理, 确定液滴在微纳复合结构表面的稳定状态, 较以往模型相比, 能够更好的预测已有的实验结果; 其次研究了微纳结构尺寸对稳定润湿状态和亚稳态到稳定态转型过程的影响; 最后提出了微纳复合结构表面设计原则, 即确定“超疏水稳定区”尺寸范围, 为超疏水表面的制备提供理论依据.  相似文献   

5.
Superhydrophobic rough structure was prepared on copper wafer via HNO3 etching technique with the assistance of Cetyltrimethyl Ammonium Bromide (CTAB) and ultrasonication. After modification of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FDTES), the copper wafer showed stable superhydrophobicity. The morphologies, chemical compositions and hydrophobicity of the substrates were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. Dense and spherical micropits appeared on copper wafer after it was etched by 5 M nitric acid with 1.2 mM CTAB under ultrasonication for 20 min. The SEM results indicated that the joint action of CTAB and ultrasonication caused the formation of dense and spherical micropits.  相似文献   

6.
物质在纳米尺度下可能呈现出与体材料不同的物理特性,这正是纳米科技发展的基础之一.要想探索在纳米尺度下材料物理性质的变化规律及可能的应用领域,离不开相应的技术手段.微纳米加工技术作为当今高技术发展的重要技术领域之一,是实现功能人工纳米结构与器件微纳米化的基础.本文根据几个不同的应用领域,介绍了微纳米加工技术在纳米物理与器件研究领域的应用.  相似文献   

7.
微纳米加工技术在纳米物理与器件研究中的应用   总被引:1,自引:0,他引:1  
物质在纳米尺度下可能呈现出与体材料不同的物理特件,这正是纳米科技发展的基础之一。要想探索在纳米尺度下材料物埋性质的变化规律及可能的应用领域,离不开相应的技术手段,微纳米加工技术作为当今高技术发展的重要技术领域之一,是实现功能人工纳米结构与器件微纳米化的基础。本文根据几个不同的应用领域,介绍了微纳米加工技术在纳米物理与器件研究领域的应用。  相似文献   

8.
We report on the formation of superhydrophobic surfaces on glass by plasma polymerization with non-polar aromatic hydrocarbon, at atmospheric pressure, in an in-line process. The glass was simply treated by radio frequency (RF) plasma with a mixture of toluene and hexamethyldisiloxane (HMDSO). The hydrophobicity of the sample surfaces increase with increasing plasma treatments; contact angles of 150° for water droplets are achieved. It is attributed mainly to its high content of non-polar hydrophobic phenyl groups and its rough surface.  相似文献   

9.
A series of superhydrophobic polytetrafluoroethylene (PTFE) surfaces were prepared by a facile cold pressing and sintering method, and their microstructures and wetting behaviors could be artificially tailored by altering sintering temperature and using different masks. Specifically, the microstructures mainly depended on the sintering temperature, whereas the wetting behaviors, water contact angle (WCA) and sliding angle (SA), greatly hinged on both the sintering temperature and mask. Then a preferable superhydrophobic surface with WCA of 162 ± 2° and SA of 7° could be obtained when the sintering temperature was 360 °C and the 1000 grit abrasive paper was used as a mask. In addition, it was worth noting that the as-prepared surfaces exhibited excellent stability under UV illumination, which was the most key factor for them toward practical applications.  相似文献   

10.
A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N,N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156° and provide effective friction-reducing and wear protection for zinc substrate.  相似文献   

11.
Fabrication of superhydrophobic surfaces on aluminum   总被引:4,自引:0,他引:4  
A superhydrophobic surface was prepared on aluminum substrate. Anodization and low-temperature plasma treatment were used to create micro-nano-structure and subsequently trichlorooctadecyl-silane modified the rough surface. The result shows that the water static contact of the aluminum surface after anodization and modification by trichlorooctadecyl-silane reaches to 152.1°. A rougher surface with some micro-nano-pores and small mastoids along the edges of pores was generated when low-temperature plasma treatment was applied to anodized aluminum film, resulting in water static contact angle up to 157.8°.  相似文献   

12.
With the rapid development of micro/nanoscaled technologies, we are confronted with more and more challenges related to small-scale thermal radiation. Thorough understanding and handling of micro/nanoscaled radiative heat transfer is vital for many fields of modern science and technology. For example, proper utilization of near-field thermal radiation phenomenon greatly improves light-electric conversion efficiency. This review introduces theoretical and experimental investigation on near-field thermal radiation, especially progress in application and control of micro/nanoscaled radiative heat transfer, which addresses problems in developing renewable and sustainable energy techniques.  相似文献   

13.
We propose a new electric field-induced micro/nanocasting method to replicate soft patterns using micro/nanocasting techniques without pressure. The process uses an alternating current (AC) electrical field and rotation of one electrode, generating a dynamic electrical field that induces electrokinetic flow motion in a dielectric solution (polydimethylsilane, PDMS). We used a lotus leaf as a replication template and characterised the PDMS flow motion to observe the effects of various process parameters (e.g., electrical field strength, rotation speed of an electrode, and electrode shape). The unstable flow motion was significantly dependent on the processing parameters, especially the rotation speed of the electrode. Using the optimised processing conditions, the replication efficiency was about 88%. We believe that this method has potential for fabricating soft micro/nanosized structures.  相似文献   

14.
Forest‐like ZnO hierarchical structures were synthesized on the conductive fabric substrate via a simple one‐step electrochemical deposition process. By applying externally a high cathodic voltage to the samples, ZnO microrods were aligned on the seed coated layer and then ZnO branches were formed on the pillars of ZnO microrods, which was caused by the strong deposition potential between the pillars of ZnO microrods and the Zn2+ dissolved in growth solution. At the external cathodic voltage of –3 V, the optimized forest‐like ZnO hierarchical structures exhibited high density, high porosity, and good crystallinity. These fabricated forest‐like ZnO hierarchical structures are potentially useful for electronic and chemical sensing applications. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
本文介绍了一种简便的方法制备n-十二烷基三甲氧基硅烷@三氧化钨包覆的超亲油超疏水的铜网.所制备的铜网显示了较为突出的超亲油和超疏水性能,该铜网的水接触角大约有154.39°,而油接触角接近于0°.实验利用了各种有机溶剂和水的混合物对所制备网膜进行分离性能测试,结果表明所得涂覆铜网的油水分离效率高达99.3V,并且水的通量大约为9962.3 L·h~(-1)·m~(-2).所制备的铜网具有良好的稳定性,经过10次分离循环后分离效率仍然保持在90%以上.由于三氧化钨优异的光催化降解性能,所制备铜网具有自清洁能力.因此,被润滑油污染的网膜可以恢复超疏水性,而这种自清洁性使所制网膜可以反复用于油水分离.  相似文献   

16.
Via a simple wet chemical etching followed by stearic acid modification, the presence of synergistic binary structures at micro- and nanometer scales and stearic acid bestows superhydrophobic property on steel and aluminum alloy surfaces. The as-prepared surfaces show superhydrophobic not only for pure water but also for corrosive liquids such as acid, basic and salt solutions. The stable superhydrophobicity of steel and aluminum alloy surfaces will extend their applications as engineering materials.  相似文献   

17.
The adhesion strength of polybutylene terephthalate (PBT) on aluminum was investigated using density functional theory-based total energy calculations. Aluminum atom was connected to a PBT monomer at different orientations and total energies were calculated in order to determine the most stable orientation. The energy differences showed that the Al oriented at 180° with the ester group of the monomer bonded strongly. Using this orientation, the PBT monomer-adhesion on aluminum surface and the aluminum atom adhesion on PBT bulk were also investigated.  相似文献   

18.
Fabrication of a superhydrophobic surface on a wood substrate   总被引:2,自引:0,他引:2  
A layer of lamellar superhydrophobic coating was fabricated on a wood surface through a wet chemical process. The superhydrophobic property of the wood surface was measured by contact angle (CA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). An analytical characterization revealed that the microscale roughness of the lamellar particles was uniformly distributed on the wood surface and that a zinc stearate monolayer (with the hydrophobic groups oriented outward) formed on the ZnO surface as the result of the reaction between stearic acid and ZnO. This process transformed the wood surface from hydrophilic to superhydrophobic: the water contact angle of the surface was 151°, and the sliding angle was less than 5°.  相似文献   

19.
Superhydrophobic surface was prepared by sol-gel method on aluminum substrate via immersing the clean pure aluminum substrate into the solution of zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetraamine (C6H12N4) at different molar ratios and unchanged 0.04 mol/L total concentration, then heated at 95 °C in water bath for 1.5 h, subsequently modified with 18 alkanethiols or stearic acid. When the molar ratios of Zn(NO3)2·6H2O and C6H12N4 were changed from 10:1 to 1:1 the contact angle was higher than 150°. The best prepared surface had a high water contact angle of about 154.8°, as well as low angle hysteresis of about 3°. The surface of prepared films using Zn(NO3)2·6H2O and C6H12N4 composed of ZnO and Zn-Al LDH, and Al. SEM images of the film showed that the resulting surface exhibits different flower-shaped wurtzite zinc oxide microstructure and porous Zn-Al LDH. The special flowerlike and porous architecture, along with the low surface energy leads to the surface superhydrophobicity.  相似文献   

20.
Stable anti-corrosive superhydrophobic surfaces were successfully prepared with the carbon nanosphere films by means of depositing the soot of burning rapeseed oil. The method is extremely cheap, facile, time-saving and avoided any of the special equipments, special reagents and complex process control. The method is suitable for the large-scale preparation of superhydrophobic surface and the substrate can be easily changed. The as-prepared surfaces showed stable superhydrophobicity and anti-corrosive property even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. The as-prepared superhydrophobic surface was carefully characterized by the field emission scanning electron microscopy and transmission electron microscope to confirm the synergistic binary geometric structures at micro- and nanometer scale. This result will open a new avenue in the superhydrophobic paint research with these easily obtained carbon nanospheres in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号