首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
范平  蔡兆坤  郑壮豪  张东平  蔡兴民  陈天宝 《物理学报》2011,60(9):98402-098402
本文采用离子束溅射Bi/Te和Sb/Te二元复合靶,直接制备n型Bi2Te3热电薄膜和p型Sb2Te3热电薄膜.在退火时间同为1 h的条件下,对所制备的Bi2Te3薄膜和Sb2Te3薄膜进行不同温度的退火处理,并对其热电性能进行表征.结果表明,在退火温度为150 ℃时,制备的n型Bi2Te3关键词: 薄膜温差电池 2Te3薄膜')" href="#">Sb2Te3薄膜 2Te3薄膜')" href="#">Bi2Te3薄膜 离子束溅射  相似文献   

2.
In this paper, thin films of titanium oxide imprinted with O,O-dimethyl-(2,4-dichlorophenoxyacetoxyl)(3′-nitrobenyl) methinephosphonate (Phi-NO2) were prepared via liquid phase deposition (LPD) method on a glassy carbon electrode. The imprinted molecular in the films was removed by treatment with immersion in CH2Cl2. X-ray diffraction (XRD) and electrochemical methods were introduced to show the evidence of the molecular imprinting phenomenon. It was also found that the recognition ability of the sensor depended on the substituents associated with tridimensional structures of the nitro-compounds. Under the optimized condition, the sensor showed better sensitivity, selectivity and reproducibility to the imprinted molecule and the linear relationship between the current and the concentration of analyte in the range of 0.1-50 μM was obtained. LPD proved to be a powerful method for imprinting titanium oxide thin sense films.  相似文献   

3.
Lei Zhao 《Applied Surface Science》2008,254(15):4620-4625
Nitrogen-doped titanium dioxide (TiO2−xNx) thin films have been prepared by pulse laser deposition on quartz glass substrates by ablated titanium dioxide (rutile) target in nitrogen atmosphere. The x value (nitrogen concentration) is 0.567 as determined by X-ray photoelectron spectroscopy measurements. UV-vis spectroscopy measurements revealed two characteristic deep levels located at 1.0 and 2.5 eV below the conduction band. The 1.0 eV level is attributable to the O vacancy state and the 2.5 eV level is introduced by N doping, which contributes to narrowing the band-gap by mixing with the O2p valence band. The enhanced degradation efficiency in a broad visible-light range was observed from the degradation of methylene blue and methylene orange by the TiO2−xNx film.  相似文献   

4.
TiO2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.  相似文献   

5.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

6.
In this work, ZnO thin films covered by TiO2 nanoparticles (labeled as TiO2-ZnO thin films) were prepared by electron beam evaporation. The influence of annealing temperature on the photoluminescence property of the samples was studied. The structures and surface morphologies of the samples were analyzed by X-ray diffraction (XRD) and atomic force microscope, respectively. The photoluminescence was used to investigate the fluorescent properties of the samples. The measurement results show that the ultraviolet emission of ZnO thin films is largely enhanced after they are covered by TiO2 nanoparticles, while the green emission is suppressed. However, when the annealing temperature is relatively high (≥500 °C), the intensity of ultraviolet emission drops off and a violet emission peak along with a blue emission peak appears. This is probably connected with the atomic interdiffusion between TiO2 nanoparticles and ZnO thin film. Therefore, selecting a suitable annealing temperature is a key factor for obtaining the most efficient ultraviolet emission from TiO2-ZnO thin films.  相似文献   

7.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

8.
TiO2 nanotube arrays were prepared by titanium anodic oxidation with either HF or H3PO4/NH4F aqueous electrolyte solutions. The samples were characterized by means of X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscope, photoluminescence spectra (PL) and photocurrent response. Aqueous solutions of methylene blue or Cr(VI) ions were used as the target pollutants to compare catalytic activities of the two nanotube array types. The amorphous impurities containing phosphorus were confirmed by XRD and IR, for the sample synthesized with H3PO4/NH4F electrolytes. They closed a portion of the active sites, acted as recombination centers of photo-generated charges, and were also involved in the negative reactions of competing photo-generated holes or OH radicals. The TiO2 nanotube arrays formed in the H3PO4/NH4F electrolytes exhibited a stronger fluorescence spectrum, a weaker photocurrent and a lower catalytic activity than the sample fabricated with HF electrolyte without phosphorus impurities.  相似文献   

9.
Optical, structural and photocatalytic properties of TiO2 thin films obliquely deposited on quartz glass substrate using an electron-beam evaporation method were investigated. The photocatalytic activity of the films was evaluated by photodecomposition of methylene blue. An increase in incident deposition angle increased the porosity and surface roughness of the TiO2 films. As a result, the photocatalytic activity was enhanced with incident deposition angle up to 60°. However, a further increase in incident deposition angle to 75° reduced the photocatalytic activity due to a lack of the crystalline phase.  相似文献   

10.
Nb-doped TiO2 (TNO) thin films were prepared by sol-gel dip-coating method with Nb content in a wide range of 0-20 at.%. The prepared films were preheated at 400 °C and then undertaken by two different post-annealing processes: (a) three times vacuum annealing and (b) multi-round annealing. The designed multi-round annealing was shown to be an effective way to improve the conductive properties of the films, compared to the traditional vacuum annealing process. The minimum resistivity reached approximately 0.5 Ω cm with Nb doping concentration around 12 at.%, and the carrier density increased with Nb-doping concentration until the critical point of 12 at.%, which might be the optimal doping content for our TNO films prepared by sol-gel method.  相似文献   

11.
TiO2 films were prepared on a silicon or soda-glass substrate using a sol suspension. The TiO2 film on the silicon substrate was composed of pure anatase phase and showed almost no contaminations. In contrast, the TiO2 film on the soda-glass substrate was composed of anatase and brookite phases. The diffusion of Na into the TiO2 film on the soda-glass substrate was observed by XPS, and Na was concentrated on the surface of the film. The yield of the brookite phase increased with decreasing distance from the surface of the film on the soda-glass substrate. Na promoted the formation of the brookite phase, although the preparative procedure was used for anatase synthesis.  相似文献   

12.
In this study, the TiO2 nanotubes were fabricated by electrochemical anodization in a NH4F/Na2SO4/PEG400/H2O electrolyte system. Ultrasonic wave (80 W, 40 kHz) was used to clean the surface of TiO2 nanotube arrays in the medium of water after the completion of the anodization. Surface morphology (FESEM) and X-ray diffraction spectrum of the nanotubes treated by sonication at 0 min, 9 min, 40 min and 60 min were compared. The experimental results showed that the precipitate on the surface of the nanotube arrays could be removed by the ultrasonic wave. The treating time had an influence on the precipitate removal and 9 min (corresponding to 12 Wh) is the suitable time for surface cleaning of the TiO2 nanotubes on this experimental condition.  相似文献   

13.
Fabrication of TiO2 nanotube arrays (TNAs) with through-hole morphology is practical significance to enhance the photocatalytic activity of TNAs, as well as expanding their applications. In present work, open-ended TNAs are synthesized on a conductive Au layer by anodizing a thermally evaporated Ti/Au bilayer film. In the anodizing process, the upper Ti layer is transformed into well-aligned TNAs. The barrier layer under the growing TNAs ultimately touches the Au layer and is completely dissolved by the electrochemical etching. In order to avoid the bubble disruption of TNAs caused by the water electrolysis after the Au layer is exposed to the electrolyte, a specific non-aqueous electrolyte is used. The XRD results reveal that the as-formed open-ended TNAs are amorphous and can be transformed into anatase by annealing at 350 °C.  相似文献   

14.
TiO2 thin films were deposited onto quartz substrates by RF magnetron sputtering. The samples deposited at various RF powers and sputtering pressures and post annealed at 873 K, were characterized using X-ray diffraction (XRD), micro Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. XRD spectrum indicates that the films are amorphous-like in nature. But micro-Raman analysis shows the presence of anatase phase in all the samples. At low sputtering pressure, increase in RF power favors the formation of rutile phase. Presence of oxygen defects, which can contribute to PL emission is evident in the XPS studies. Surface morphology is much affected by changes in sputtering pressure which is evident in the SEM images. A decrease in optical band gap from 3.65 to 3.58 eV is observed with increase in RF power whereas increase in sputtering pressure results in an increase in optical band gap from 3.58 to 3.75 eV. The blue shift of absorption edge in all the samples compared to that of solid anatase is attributed to quantum size effect. The very low value of extinction coefficient in the range 0.0544-0.1049 indicates the excellent optical quality of the samples. PL spectra of the films showed emissions in the UV and visible regions.  相似文献   

15.
TiO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on optical, mechanical and structural properties of TiO2 thin films were studied. The results showed that with the increase of oxygen partial pressure, the optical transmittance gradually increased, the transmittance edge gradually shifted to short wavelength, and the corresponding refractive index decreased. The residual stresses of all samples were tensile, and the value increased as oxygen partial pressure increasing, which corresponded to the evolutions of the packing densities. The structures of TiO2 thin films all were amorphous because deposition particles did not possess enough energy to crystallize.  相似文献   

16.
Fast photoelectric effects have been observed in MgB2 thin film fabricated by chemical vapour deposition. The rise time was $\sim $10 ns and the full width at half-maximum was \sim185\,ns for the photovoltaic pulse when the film was irradiated by a 308\,nm laser pulse of 25\,ns in duration. X-ray diffraction and the scanning electron microscope revealed that the film was polycrystalline with preferred c-axis orientation. We propose that nonequilibrium electron--hole pairs are excited in the grains and grain boundary regions for MgB2 film under ultraviolet laser and then the built-in electric field near the grain boundaries separates carriers, which lead to the appearance of an instant photovoltage.  相似文献   

17.
We report morphological and optical properties of a colloidal TiO2 nanoparticle film, deposited on a quartz substrate by using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Atomic Force Microscopy demonstrated that a good uniformity of the deposition can be obtained. The presence of agglomerates with dimensions of about 1 μm in size was noticed. Form UV-vis transmission spectra, recorded in the 200-800 nm range, the optical constants and the energy gap were determined besides the film thickness. The optical constants resulted in agreement with the values reported in literature for TiO2 nanoparticle thin films.  相似文献   

18.
Novel oriented aligned TiO2 nanotube (TN) arrays were fabricated by anodizing titanium foil in 0.5% HF electrolyte solution. It is indicated that the sizes of the TNs greatly depended on the applied voltages to some extent. The electrical properties of the TN arrays were characterized by current-voltage (I-V) measurements. It exhibits a nonlinear, asymmetric I-V characterization, which can be explained that there exists an n-type semiconductor/metal Schottky barrier diode between TN arrays and titanium substrate interface. The absorption edges shift towards shorter wavelengths with the decrease of the anodizing voltages, which is attributed to the quantum size effects. At room temperature, a novel wide PL band consisting of four overlapped peaks was observed in the photoluminescence (PL) measurements of the TN arrays. Such peaks were proposed to be resulted from the direct transition X1 → X2/X1, indirect transition Γ1 → X2/X1, self-trapped excitons and oxygen vacancies, respectively.  相似文献   

19.
This paper seeks to determine the optimal settings for the deposition parameters, for TiO2 thin film, prepared on non-alkali glass substrates, by direct current (dc) sputtering, using a ceramic TiO2 target in an argon gas environment. An orthogonal array, the signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. Using the Taguchi method for design of a robust experiment, the interactions between factors are also investigated. The main deposition parameters, such as dc power (W), sputtering pressure (Pa), substrate temperature (°C) and deposition time (min), were optimized, with reference to the structure and photocatalytic characteristics of TiO2. The results of this study show that substrate temperature and deposition time have the most significant effect on photocatalytic performance. For the optimal combination of deposition parameters, the (1 1 0) and (2 0 0) peaks of the rutile structure and the (2 0 0) peak of the anatase structure were observed, at 2θ ∼ 27.4°, 39.2° and 48°, respectively. The experimental results illustrate that the Taguchi method allowed a suitable solution to the problem, with the minimum number of trials, compared to a full factorial design. The adhesion of the coatings was also measured and evaluated, via a scratch test. Superior wear behavior was observed, for the TiO2 film, because of the increased strength of the interface of micro-blasted tools.  相似文献   

20.
Highly ordered titanium oxide (TiO2) nanotubes were prepared by electrolytic anodization of titanium electrodes. Morphological evolution and phase transformations of TiO2 nanotubes on a Ti substrate and that of freestanding TiO2 membranes during the calcinations process were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction microscopy. The detailed results and mechanisms on the morphology and crystalline structure were presented. Our results show that a compact layer exists between the tubular layer and Ti substrate at 600 °C, and the length of the nanotubes shortens dramatically at 750 °C. The freestanding membranes have many particles on their tubes during calcinations from 450 to 900 °C. The TiO2 nanotubes on the Ti substrate transform to rutile crystals at 600 °C, while the freestanding TiO2 membranes retain an anatase crystal with increasing temperature to 800 °C. The photocatalytic activity of TiO2 nanotubes on a Ti substrate annealed at different temperatures was investigated by the degradation of methyl orange in aqueous solution under UV light irradiation. Due to the anatase crystals in the tubular layer and rutile crystals in the compact layer, TiO2 nanotubes annealed at 450 °C with pure anatase crystals have a better photocatalytic activity than those annealed at 600 °C or 750 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号