首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Ti-6Al-4V合金中片层组织形成的相场模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
王刚  徐东生  杨锐 《物理学报》2009,58(13):343-S348
Ti-6Al-4V是典型的α+β钛合金,不同热处理制度和热加工工艺下可得到形貌各异的微观组织,从而表现出不同的力学性能,深刻理解合金中微观组织的形成机制有助于合金的进一步优化和改造.采用相场方法模拟Ti-6Al-4V合金中片层组织的形成及演化,以热力学数据库和动力学数据库为输入,通过计算定量预测β晶界上已存在初生α相时合金组织随时间的演化.结果表明,在一定条件下,随着时间的延长晶界α向β晶内生长形成片层组织,片状α簇的形貌与界面能各向异性密切相关;晶界取向对片层生长有重要作用,垂直于晶界生长时产生最密集的片层,随倾斜角增大片层加厚且生长缓慢;此外,热处理温度显著改变片层组织形貌,温度越高,片层尖端生长速度越慢,片层间距越大. 关键词: Ti-6Al-4V 相场模拟 片层组织  相似文献   

2.
Ti-6Al-4V alloy was treated with various concentrations (5 wt.%, 15 wt.% and 25 wt.%) of hydrogen peroxide (H2O2) and then heat treated to produce an anatase titania layer. The surface modified substrates were immersed in simulated body fluid (SBF) solution for the growth of an apatite layer on the surface and the formed apatite layer was characterized using various surface characterization techniques. The results revealed that titania layer with anatase nature was observed for all H2O2 treated Ti-6Al-4V alloy, irrespective of the H2O2 concentrations. Ti-6Al-4V alloy treated with 15 wt.% and 25 wt.% of H2O2 induced apatite formation, however 5 wt.% of H2O2 treated Ti-6Al-4V failed to form apatite layer on the surface. The electrochemical behaviour of H2O2 treated specimens in SBF solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy. Ti-6Al-4V alloy treated with 25 wt.% of H2O2 solution exhibited low current density and high charge transfer resistance values compared to specimens treated with other concentrations of H2O2 and untreated Ti-6Al-4V alloy.  相似文献   

3.
The aim of this work is to discuss the growth characteristics of the ceramic coatings on Ti alloy by plasma electrolytic oxidation (PEO) technique. Ceramic coatings were prepared on Ti alloy by plasma electrolytic oxidation in different electrolyte solutions under different pulse modes. The composition and the structure of the coatings were investigated by X-ray diffraction and scanning electron microscopy (SEM), respectively. The amount of the dissolved titanium into the electrolytes during PEO process was measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The structure and the composition of the coatings were related to the mode of the spark discharge during PEO process. (a) Under the pulsed single-polar mode: In Na3PO4 solution, the spark discharge was mainly due to the breakdown of the oxide film, and the coatings prepared were porous and mainly structured by the Ti from the substrate. In K4ZrF6-H3PO4 and NaAlO2-Na3PO4 solutions, the main mode of the spark discharge was the breakdown of the oxide film at the initial stage, and then changed into the breakdown of the vapor envelope, and the coatings were rough and thick, and mainly structured by the elements from the electrolyte. (b) Under the pulsed bi-polar mode in NaAlO2-Na3PO4 solution, the spark discharge may be mainly due to the breakdown of the oxide film, the coatings prepared were dense in inner layer and loose in outer layer, and structured by the elements from both the substrate and the electrolyte. Besides, the ICP-AES analyses showed that the amount of the dissolved titanium in the electrolyte during PEO process was more under the breakdown of the oxide film than under the breakdown of the vapor envelope, which was consistent with the changes of the structure of the coatings. Cathode pulse in the pulsed bi-polar mode increased the amount of the dissolved titanium in the electrolyte, compared with the pulsed single-polar one.  相似文献   

4.
High power ultrasonic vibration is widely used for improving manufacturing processes such as machining and metal forming. High frequency mechanical vibration affects material properties and friction forces in contacting surfaces. Flow stress reduction under superimposed ultrasonic vibration is called as acoustic softening. The amount of this parameter should be determined for ultrasonic assisted metal forming processes. For determination of this parameter for workhorse Ti-6Al-4V alloy, experimental setup was designed and fabricated. Then tensile test under longitudinal ultrasonic vibration was performed for different ultrasonic powers. Results show that ultrasonic vibration has considerable effect on plastic behavior of the alloy and decreases flow stress. Also, increasing ultrasonic power leads to higher acoustic softening. Yield stress reduction up to 9.52%, ultimate stress reduction up to 4.55% and elongation up to 13% were obtained at 340 W ultrasonic power. After applying ultrasonic vibrations and its termination, hardness of specimens were measured in which increase up to 9% was observed.  相似文献   

5.
Titanium alloys are very attractive materials because they have high specific strength, excellent corrosion and erosion resistance in many active environments. However, their low hardness values and poor tribological properties require improvement of their surface properties. The present study is concerned with the fabrication of Zr and Zr-N alloying layers in the surfaces of Ti-6Al-4V substrates by plasma surface alloying technique. The microstructure, chemical composition and hardness of the surface alloying layers were analyzed to understand the mechanisms of surface alloying and hardness improvement. The Zr and Zr-N surface alloying layers formed were homogeneous and compact, in which the surface alloying elements all displayed gradient distributions. The Zr and Zr-N surface alloying layers all enhanced the surface hardness of Ti-6Al-4V alloy. Zr-N surface alloying resulted in greater improvement in hardness and the maximum microhardness of (1.37 ± 0.04) × 103 HK was obtained at the subsurface, which was much higher than that of the untreated Ti-6Al-4V alloy. The Zr-N surface alloying layer consisted of an outer nitride layer and an inner diffusion zone of Zr and N, and its very high hardness owed to the formation of the nitride layer. The mechanism of hardness improvement of Zr surface alloyed Ti-6Al-4V alloy was solid solution strengthening.  相似文献   

6.
Titania composite coatings were prepared on carbon steel by plasma electrolytic oxidation in silicate electrolyte and aluminate electrolyte with titania powers doping in the electrolytes. The microstructure of the coatings was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The properties of the coatings including bond strength, thickness, thermal shock resistance and corrosion resistance varying with the quantities of titania powers in the electrolytes were studied. Investigation results revealed that the coating obtained in silicate electrolyte was composed of anatase-TiO2, rutile-TiO2 crystal phases and some Fe, Si, P elements; coating obtained in aluminate electrolyte consisted of anatase-TiO2, Al2TiO5 and some Fe, P elements. Coatings obtained in two types of electrolytes show porous and rough surface. With increasing the concentration of titania powers in the electrolytes, the coating surface first became more compact and less porous and then became more porous and coarse. The bond strength and thickness were not strongly affected by concentration of titania powers in electrolytes. The valves were 23 MPa and for 66 μm for coatings obtained in aluminate electrolyte, and 21 MPa and 35 μm for coatings obtained in silicate electrolyte. Coatings obtained in silicate electrolyte showed a little better thermal shock resistance than those obtained in aluminate electrolyte and the best coatings were obtained with middle concentration of titania powers in the electrolytes. All coated samples showed better corrosion resistance than the substrate in 3.5 wt% NaCl solution. The best coatings were also obtained with middle concentration of titania powers doping in both electrolytes whose corrosion current density was decreased by 2 orders of magnitude compared with the substrate.  相似文献   

7.
Abstract

Ti-6Al-4V alloy with different microstructures was investigated by means of ultrasonic attenuation measurements. Widmanstätten and equiaxed microstructures were obtaining by heat treating a Ti-6Al-4V alloy. These two microstructures were over-aged at 545 °C at different ageing times. In order to find out the factors affecting the variation in the ultrasonic attenuation, the heat-treated samples were examined by optical microscopy and scanning electron microscopy. Based on the theory of ultrasonic attenuation in a solid media, the mechanisms of ultrasonic attenuation in the Ti-6Al-4V alloy with different microstructures were analysed. It was found that in both cases with Widmanstätten and equiaxed microstructures, the ultrasonic attenuation increased with frequency. After ageing, the ultrasonic attenuation was mainly attributed to the scattering loss which included the stochastic and the Rayleigh scattering due to the precipitation of Ti3Al particles homogeneously distributed in the α phase. Data analysis presented in the study showed that ultrasonic attenuation yields more accurate area fractions of precipitates predictions when a polynomial fit is performed.  相似文献   

8.
Laser gas assisted nitriding of Ti-6Al-4V alloy is carried out and nitride compounds formed and their concentration in the surface vicinity are examined. SEM, XRD and XPS are accommodated to examine the nitride layer characteristics. Microhardness across the nitride layer is measured. Temperature field and nitrogen distribution due to laser irradiation pulse is predicted. It is found that the nitride layer appears like golden color; however, it becomes dark gold color once the laser power irradiation is increased. The δ-TiN and ?-TiN are dominant phases in the surface vicinity. The needle like dendrite structure replace with the feathery like structure in the surface region due to high nitrogen concentration. No porous or microcracks are observed in the nitrided layer, except at high power irradiation, in this case, elongated cracks are observed in the surface region where the nitrogen concentration is considerably high.  相似文献   

9.
Ceramic coatings on the surfaces of Mg-9Al-1Zn (AZ91) magnesium alloy and Mg-9Al-1Zn-1Nd magnesium alloy (AZ91 magnesium alloy modified by neodymium, named as AZ91Nd in this paper) are synthesized in aluminate electrolyte by plasma electrolytic oxidation (PEO) process, respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses show the PEO coating on the Mg-9Al-1Zn-1Nd alloy comprises not only MgO and Al2O3, which are found in the coating on the AZ91 alloy, but also a trace amount of Nd2O3. Microstructure observations indicate the addition of Nd can decrease the sizes of β phases and form Al2Nd intermetallics in the AZ91 alloy. The fine β phases can effectively restrain the formation of unclosed-holes and greatly decrease the sizes of pores in the coating during the PEO process. In addition, the Al2Nd intermetallics can be completely covered due to the lateral growth of the PEO coatings formed on the α and β phases. As a result, the coating on the AZ91Nd alloy possesses a dense microstructure compared with that on the AZ91 alloy. The following corrosion tests indicate the corrosion resistance of the PEO coating on the AZ91Nd alloy is evidently higher than that of the PEO coating on the AZ91 alloy.  相似文献   

10.
A single electro-discharge-sintering (EDS) pulse (1.0 kJ/0.7 g), from a 300 (F capacitor, was applied to atomized spherical Ti-6Al-4V powder in air to produce microporous compact. A solid core surrounded by a porous layer was self-assembled by a discharge in the middle of the compact. X-ray photoelectron spectroscopy was used to study the surface characteristics of the compact material. C, N, O and Ti were the main constituents, with smaller amounts of Al and V. The surface was lightly oxidized and was primarily in the form of TiO2. A lightly etched EDS sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V compact surface also contained small amounts of TiN in addition to TiO2, resulting in the reaction between nitrogen in air and the Ti substrate in times as short as 125 μs.  相似文献   

11.
The influence of the surface roughness of Mg alloys on the electrical properties and corrosion resistance of oxide layers obtained by plasma electrolytic oxidation (PEO) were studied. The leakage current in the insulating oxide layer was enhanced by increasing the surface roughness, which is a favorable characteristic for the material when applied to hand-held electronic devices. The variation of corrosion resistance with surface roughness was also investigated. The corrosion resistance was degraded by the increasing surface roughness, which was confirmed with DC polarization and impedance spectroscopy. Pitting corrosion on the passive oxide layer was also analyzed with a salt spray test, which showed that the number of pits was not affected by the surface roughness when the spray time reached 96 h.  相似文献   

12.
13.
Plasma electrolytic oxidation (PEO) of an AM50 magnesium alloy was accomplished in a silicate-based electrolyte using a DC power source. Coatings were produced at three current densities, i.e. 15 mA cm−2, 75 mA cm−2, and 150 mA cm−2 and were characterised for thickness, roughness, microstructural morphology, phase composition, and corrosion resistance. Even though the 15 min treated coatings produced at higher current density levels were thicker, they showed poor corrosion resistance when compared to that of the coatings obtained at 15 mA cm−2. Short-term treatments (2 min and 5 min) at 150 mA cm−2 yielded coatings of thickness and corrosion resistance comparable to that of the low current density coatings. The superior corrosion resistance of the low thickness coatings is attributed to the better pore morphology and compactness of the layer.  相似文献   

14.
The formation of the coarse columnar crystal structure of Ti-6Al-4V alloy in the process of additive manufacturing greatly reduces the mechanical performance of the additive manufactured parts, which hinders the applications of additive manufacturing techniques in the engineering fields. In order to refine the microstructure of the materials using the high intensity ultrasonic via the acoustic cavitation and acoustic flow effect in the process of metal solidification, an ultrasonic vibration technique was developed to a synchronous couple in the process of Laser and Wire Additive Manufacturing (LWAM) in this work. It is found that the introduction of high-intensity ultrasound effectively interrupts the epitaxial growth tendency of prior-β crystal and weakens the texture strength of prior-β crystal. The microstructure of Ti-6Al-4V alloy converts to fine columnar crystals from typical coarse columnar crystals. The simulation results confirm that the acoustic cavitation effect applied to the molten pool created by the high-intensity ultrasound is the key factor that affects the crystal characteristics.  相似文献   

15.
In the present study, experimental investigations of fiber-laser-beam-welding of 5 mm thick Ti-6Al-4V alloy are carried out based on statistical design of experiments. The relationship between the process parameters such as welding power, welding speed, and defocused position of the laser beam with the output responses such as width of the fusion zone, size of the heat affected zone, and fusion zone area are established in terms of regression models. Also, the most significant process parameters and their optimum ranges are identified and their percentage contributions on output responses are calculated. It is observed that welding power and speed plays the major role for full penetration welding. Also, welding power shows direct effect whereas welding speed shows the inverse effect on the output responses. The bead geometry is influenced by the defocused position of the laser beam due to the change in power density on the workpiece surface. However, overall fusion zone area is unaffected. Mechanical characterization of the welded samples such as microstructural analysis, hardness, and tensile tests are conducted. It is noticed that the hardness value of the FZ is higher than the HAZ and BM zone due to the difference in cooling rate during welding which promotes the formation of α′ martensitic phase in the FZ. Also, an average hardness value in the FZ is compared for two different defocusing positions (i.e. 1 and 2 mm). It is found that hardness value is higher for 1 mm defocused position than 2 mm due the decrement in grain size below a critical range at 2 mm defocused position. The ultimate tensile strength and % elongation of the welded samples are degraded as compared to BM which can be further improved by post heat treatment.  相似文献   

16.
An attempt was made to produce calcium containing plasma electrolytic oxidation (PEO) coatings on AM50 magnesium alloy using an alkaline electrolyte. This study was performed in three alkaline electrolytes containing calcium hydroxide and sodium phosphate with three different mass ratios viz., 1:2.5, 1:5 and 1:7.5. All the three coatings produced were found to contain Ca and P in appreciable amounts. The concentration of P was found to be higher in the coatings obtained in the electrolytes with higher concentration of phosphate ions. Even though all the three coatings were found to be constituted with magnesium oxide and magnesium phosphate phases, X-ray diffraction analyses revealed that the phase composition was influenced by the phosphate ion concentration/conductivity of the electrolyte. Further, the PEO coating obtained in the 1:7.5 ratio electrolyte was found to contain di-calcium phosphate (monetite) and calcium peroxide phases, which were absent in the other two coatings. Potentiodynamic polarization studies performed in 0.1 M NaCl solution showed that the coatings obtained from the 1:5 ratio electrolyte possessed a superior corrosion resistance, which is attributed to the combined effect of thickness, compactness and phase/chemical composition of this coating.  相似文献   

17.
Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.  相似文献   

18.
The aim of this work is to discuss the growth characteristics and corrosion behavior of the prepared ceramic coatings on titanium by plasma electrolytic oxidation (PEO) technique in different electrolytes. PEO process was carried out on titanium under constant voltage regime using a pulse power supply. Three kinds of electrolytes, phosphate, silicate and borate based solutions, were used to evaluate the influence of electrolyte composition on the structure, surface morphology, phase composition and corrosion behavior of prepared ceramic oxide films (titania). The phase composition of the coatings was investigated by X-ray diffraction. Scanning electron microscopy was employed to evaluate the growth and surface morphology of coatings. Elements of coatings were investigated with energy dispersive spectrometer. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. The spark voltage of oxide films had a significant effect on the surface morphology, size and homogeneity of micro-pores, thickness and corrosion properties of coatings.  相似文献   

19.
Pulsed Nd:YAG laser welding of pure niobium plate to titanium alloy Ti-6Al-4V sheet in butt joint is studied regarding the laser/metal interaction modes. To obtain the optimized process parameters in dissimilar welding of Ti-6Al-4V/Nb, the melting ratio of laser beam energy for each weld counterpart is evaluated experimentally. Different laser welding modes of keyhole and conduction are predicted regarding the absorbed energy from the similar laser pulses on each weld counterpart. Laser keyhole and conduction welding were observed simultaneously through direct visualization of laser interaction with dissimilar metals using High Speed Imaging (HSI) system.  相似文献   

20.
Ceramic coatings were successfully prepared on steel by plasma electrolytic oxidation (PEO) in aluminate electrolyte and silicate electrolyte, respectively. The microstructure of the coatings including surface morphology, phase and element composition were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The bonding strength between the ceramic coating and the substrate was tested using different methods including tensile tests and shearing tests. The thermal shock resistance of the coatings was also evaluated. The results indicated that coatings obtained in both electrolytes were porous and coarse. The average diameters of the pores were below 10 μm. PEO coatings obtained in aluminate electrolyte were composed of Fe3O4 and FeAl2O4, while those obtained in silicate electrolyte were in a noncrystal state. PEO coatings obtained in aluminate electrolyte showed similar change trend of tensile strength and shearing strength with increasing treating time, namely, a relatively high values with middle time treating and low value with short and long time treating. The best coating was the samples treated with 30 min, whose tensile strength was 20.6 MPa and shearing strength was 16 MPa. The tensile strength and shearing strength of coatings obtained in silicate electrolyte were not strongly influenced by the treating time, the values of which were range in 14 ± 2 MPa and 11 ± 2 MPa, respectively. Coatings obtained in both electrolytes showed the best thermal shock resistance with middle time treating. Coatings obtained in silicate electrolyte show a little better thermal shock resistance than those obtained in aluminate electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号