共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei Fen Jiang Yan Feng Zhang Yu Sheng Wang Lei Xu Xin Jian Li 《Applied Surface Science》2011,258(5):1662
A novel composite structure, Au nanoparticles coated on a nest-shaped array of carbon nanotube nested into a silicon nanoporous pillar array (Au/NACNT/Si-NPA), was fabricated for surface-enhanced Raman scattering (SERS). The morphology of the Au/NACNT/Si-NPA composite structure was characterized with the aid of scanning electron microscopy, X-ray diffraction instrumentation and Transmission electron microscopy. Compared with SERS of rhodamine 6G (R6G) adsorbed on SERS-active Au substrate reported, the SERS signals of R6G adsorbed on these gold nanoparticles were obviously improved. This was attributed to the enlarged specific surface area for adsorption of target molecules brought by the nest-shaped CNTs structure. 相似文献
2.
An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays 下载免费PDF全文
A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluated as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G is as low as 10-7 M, and the Raman enhancement factor is as large as 105 with a relative standard deviation of less than 25%. After the calibration of the Raman peak intensifies of rhodamine 6G and thiram, organic molecules could be quantitatively detected. These results indicate that Au/SiNWA is a promising SERS-active substrate for the detection of biomolecules present in low concentrations. Our findings are an important advance in SERS substrates to allow fast and quantitative detection of trace organic contaminants. 相似文献
3.
A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented. 相似文献
4.
Hai Jun Xu De Yao Li Xin Jian Li 《Physica E: Low-dimensional Systems and Nanostructures》2009,41(10):1882-1885
Silicon nanoporous pillar array (Si-NPA) is fabricated by hydrothermally etching single crystal silicon (c-Si) wafers in hydrofluoric acid containing ferric nitrate. Microstructure studies disclosed that it is a typical micron/nanometer structural composite system with clear hierarchical structures. The optical parameters of Si-NPA were calculated by general light-absorption theory and Kramers–Kronig relations based on the experimental data of reflectance and the variations compared with the counterparts of c-Si were analyzed. The features of the electronic band structure deduced from the optical measurements strongly indicate that Si-NPA material is a direct-band-gap semiconductor and possesses separated conduction sub-bands which accords with conduction band splitting caused by silicon nanocrystallites several nanometers in size. All these electronic and optical results are due to the quantum confinement effect of the carriers in silicon nanocrystallites. 相似文献
5.
Wei Fen Jiang Hao Shan HaoYu Sheng Wang Lei XuTian Jie Zhang 《Applied Surface Science》2011,257(15):6336-6339
We investigated the influence of growth time on field emission properties of multi-walled carbon nanotubes deposited on silicon nanoporous pillar array (MWCNTs/Si-NPA), which were fabricated by thermal chemical vapour deposition at 800 °C for 5, 15 and 25 min respectively, to better understand the origins of good field emission properties. The results showed that the MWCNTs/Si-NPA grown for 15 min had the highest field emission efficiency of the three types of samples. Morphologies of the products were examined by field-emission scanning electron microscope, and the excellent field emission performance was attributed not only to the formation of a nest array of multi-walled carbon nanotubes, which would largely reduce the electrostatic shielding among the emitters and resulted in a great enhancement factor, but also to the medium MWCNTs density films, there was an ideal compromise between the emitter density and the intertube distance, which also could effectively avoid electrostatic shielding effects, along with a high emitter density. 相似文献
6.
采用水热腐蚀技术在单晶硅衬底上制备出一种新的硅微米/纳米结构复合体系——硅纳米孔柱阵列(Si-NPA),并对其表面形貌、结构及光学特性进行研究.Si-NPA的结构复合性体现为 在微米和纳米两个尺度上形成了三个分明的结构层次,即微米尺度的硅柱阵列结构、硅柱上 的纳米多孔结构以及组成孔壁的硅纳米晶粒.积分光反射谱和荧光光谱测试表明,Si-NPA具 有良好的光吸收和光致发光特性.依据Si-NPA积分反射谱的实验数据,采用Kramers-Kronig 变换关系计算得到了Si-NPA的复折射率和复介电函数、吸收系数等光学常数,并由此讨论了 Si-NPA相对于单晶硅的光学特性发生显著变化的原因.最后,通过分析Si-NPA的光吸收系数 与入射光子能量之间的关系,揭示出Si-NPA具有直接带隙半导体的电子结构特征,而且理论 计算得到的Si-NPA的带隙能与其光致发光谱的峰位能很好符合.
关键词:
硅纳米孔柱阵列
光学特性
电子结构
水热腐蚀 相似文献
7.
AbstractA micro-structured gold surface, consisting of a periodic square–based anti–pyramidal array (Klarite) with a smooth boundary surface on which silver nanoparticles (diameter: 60?nm) were deposited, produced an active surface enhanced Raman scattering substrate. With p-aminothiophenol as a probe molecule, the Raman activity of the micro–structured surface was compared before and after deposition of the silver nanoparticles. Experimental results show that the Raman spectra on the silver/p-aminothiophenol/Klarite structure is stronger than that on the silver/p-aminothiophenol/gold film and the Raman spectra on the silver/p-aminothiophenol/gold film is stronger than that on silver/p-aminothiophenol, p-aminothiophenol/Klarite structure, p-aminothiophenol/gold film, which is confirmed by numerical simulations. A similar result is obtained with crystal violet as test molecule. 相似文献
8.
利用激光刻蚀法制备了具有化学纯净表面的银岛膜,该岛膜有很好的表面增强特性。利用表面增强拉曼光谱和表面增强红外光谱对胸腺嘧啶分子在银岛膜表面的吸附状态进行了对比研究。表面增强拉曼光谱中CN和C—O伸缩振动模式的出现表明胸腺嘧啶分子由原来的酮式结构变成了烯醇式结构;C(4)O伸缩振动谱带明显增强和N(3)的去质子化异构体特征峰的存在证明胸腺嘧啶分子是通过O(8)和N(3)的共同作用倾斜地吸附在银岛膜表面。对10-5 mol.L-1胸腺嘧啶在银岛膜表面上的红外光谱利用欧米采样器进行了反射法测量,发现其红外吸收增强了200倍。红外信号分析的结果支持了胸腺嘧啶分子通过O(8)与银表面发生相互作用的论断,同时也可得出胸腺嘧啶倾斜地吸附在银岛膜表面的结论。 相似文献
9.
Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array 下载免费PDF全文
Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique
silicon substrate with a hierarchical structure, silicon nanoporous
pillar array (Si-NPA), by using a vapour phase transport method. It
is found that as-grown ZnO film is composed of closely packed ZnO
crystallites with an average size of $\sim$10\,\mu$m. The film
resistivity of ZnO/Si-NPA is measured to be
$\sim$8.9\Omega\cdot$\,cm by the standard four probe method. The
lengthwise $I$-$V$ curve of ZnO/Si-NPA heterostructure is measured.
Theoretical analysis shows that the carrier transport across
ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a
thermionic process at high voltages and a quantum tunnelling process
at low voltages. 相似文献
10.
We fabricated the Ag cap array for surface-enhanced Raman scattering (SERS) by Ag deposition onto two dimensional polystyrene colloid sphere templates, and 4-mercaptopyridine (4-MPy) was used as the probing molecule. When the colloids with different size were chosen as the substrate for 20 nm Ag deposition, the film on 100 nm colloids gave the significant enhancement. SERS intensity increased with the increase of Ag thickness. When 20 nm Ag film was coated by Ta, the SERS signals decreased with the increase of Ta thickness, indicating the main effect from the top of cap structure. When Co layer was added under the Ag film, the SERS intensity decreased with the increase of Co thickness because the Co layer affects electromagnetic and plasmon resonance. 相似文献
11.
The adsorption behaviors of Alizarins and Reactive blue X-BR on both activated carbon covered with colloidal silver were studied using the surface-enhanced Raman scattering (SERS). The adsorptive mechanisms of both Alizarins and Reactive blue X-BR were discussed. The results indicated that colloidal silver can greatly enhance Raman scattering responses and colloidal silver was adsorbed on activated carbon through electrostatic force and Van der Waals forces while both the Reactive blue X-BR and Alizarins were adsorbed on silver collide mainly through chemical absorptions. 相似文献
12.
Ag films on Si substrates were fabricated by immersion plating and served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement reaction. The formation procedure of films on the surface of Si was studied by scanning electron microscopy (SEM), which revealed Ag films with island and dendritic morphologies experienced novel structural evolution process during galvanic replacement reaction, and nanostructures with holes were produced within the resultant Ag/Au bimetallic films. SERS activity both of sacrificial Ag films and resultant Ag/Au bimetallic films was investigated by using crystal violet as an analyte. It has been shown that SERS signals increased with the process of galvanic substitution and reached intensity significantly stronger than that obtained from pure Ag films. 相似文献
13.
Gold nanoparticle arrays are fabricated for surface-enhanced Raman scattering (SERS) and the effect of the annealing temperature, the thickness of nanoparticle array and the exciting power on the SERS signals are investigated. The particle distribution and particle size are dense and uniform on the glass substrate when the 10 nm gold film was annealed at 250 °C and strong SERS signals for Rhodamine 6G were achieved via a 532 nm excitation with a 10 mW power. The SERS signal at 1650 cm−1 is enhanced more than 10 times as compared to that of the gold film without annealing. The strong SERS behavior of gold nanoparticle arrays may broaden the SERS applications in biomedical and analytical chemistry. 相似文献
14.
Zhenping Zhou Dongyun Wan Xinyuan Dou Li Song Xiaoqin Yan Dongfang Liu Huajun Yuan Yan Gao Jianxiong Wang Lifeng Liu Weiya Zhou Sishen Xie 《Physica E: Low-dimensional Systems and Nanostructures》2005,28(4):360-364
A new experimental technique has been presented to investigate the surface-enhanced Raman scattering (SERS) on “individual and untouched” single-walled carbon nanotubes (SWNTs) deposited onto gold or silver film-covered substrate through a direct CVD method. It was found that the radial breathing mode for SERS shows a narrower linewidth than the normal Raman spectroscopy (NRS). Relative to NRS, the SERS spectra also revealed a preferable contribution to some metallic component of the G line. However no obvious difference for D and G′ between SERS and NRS has been revealed, which is different from the previous results on bulk SWNT samples. 相似文献
15.
Cedrik Meier Stephan Lüttjohann Vasyl G. Kravets Hermann Nienhaus Axel Lorke Hartmut Wiggers 《Physica E: Low-dimensional Systems and Nanostructures》2006,32(1-2):155
The Raman spectra of silicon nanoparticles in the size range between d=3.5– have been studied experimentally. Scattering processes up to second order are being observed. The experimental results are analyzed in the framework of the phonon confinement model. While this model describes qualitatively the observations for first-order scattering processes, it is not applicable for scattering processes of higher order. From the analysis of second-order scattering, we determine a redshift of the TO phonon at the X and L points. 相似文献
16.
Zao Yi Xibin Xu Xibo LiJiangshan Luo Weidong WuYongjian Tang Yougen Yi 《Applied Surface Science》2011,258(1):212-217
In this paper, an Au/Ag bimetallic hollow nanostructure was obtained by using SiO2 nanospheres as sacrificial templates. The nanostructure was fabricated via a three steps method. SiO2@Au nanospheres were first synthesized by the layer-by-layer technique, and then they were coated with a layer of Ag particles, finally, the Au/Ag bimetallic hollow nanospheres were obtained by dissolution of the SiO2 core by exposure in HF solution. Several characterizations, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and UV visible absorption spectroscopy were used to investigate the prepared nanostructures. The effectiveness of these Au/Ag bimetallic hollow nanospheres as substrates toward surface-enhanced Raman scattering (SERS) detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such Au/Ag bimetallic hollow nanospheres structure films which consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement. The Au/Ag bimetallic hollow nanostructured aggregate, interconnected nanostructured aggregate and nanoscale roughness are important factors responsible for this large SERS enhancement ability. 相似文献
17.
利用具有高密度拉曼热点的金属纳米结构作为表面增强拉曼散射(SERS)基底,可以显著增强吸附分子的拉曼信号.本文通过阳极氧化铝模板辅助电化学法沉积制备了高密度银(Ag)纳米颗粒阵列;利用扫描电子显微镜和反射谱表征了样品的结构形貌和表面等离激元特性;用1, 4-苯二硫醇(1, 4-BDT)为拉曼探针分子,研究了Ag纳米颗粒阵列的SERS效应.通过优化沉积时间,制备出高SERS探测灵敏度的Ag纳米颗粒阵列,检测极限可达10~(-13)mol/L;时域有限差分法模拟结果证实了纳米颗粒间存在强的等离激元耦合作用,且发现纳米颗粒底端的局域场增强更大.研究结果表明Ag纳米颗粒阵列可作为高效的SERS基底. 相似文献
18.
In this work, we use electrochemical oxidation–reduction cycles (ORC) methods to prepare surface‐enhanced Raman scattering (SERS)‐active gold substrates modified with SiO2 nanoparticles to improve the corresponding SERS performances. Based on the modified substrates, the SERS of Rhodamine 6G (R6G) exhibits a higher intensity by 3‐fold of magnitude, as compared with that of R6G adsorbed on a SERS‐active Au substrate without the modification of SiO2 nanoparticles. Moreover, the SERS enhancement capabilities of the modified and the unmodified Au substrates are seriously destroyed at temperatures higher than 250 and 200 °C, respectively. These results indicate that the modification of SiO2 nanoparticles can improve the thermal stability of SERS‐active substrates. The aging in SERS intensity is also depressed on this modified Au substrate due to the contribution of SiO2 nanoparticles to SERS effects. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
ABSTRACTWe demonstrate a silicon cone array substrate coated with gold nanoparticles and which was highly sensitive, homogeneous, and provided a large area for surface-enhanced Raman spectroscopy (SERS). A deep reactive ion-etching process was used to fabricate the high-density silicon cone array, and gold nanoparticles were formed on the silicon cone surface by magnetron sputtering. The substrate was tested with 10?6 M rhodamine 6 G solution. Enhancement of the substrate was about 60-fold greater than that of flat substrate. Moreover, SERS signals obtained from 24 random areas on the substrate showed good homogeneity with an average standard deviation of 3.9%. 相似文献