首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quasi-crystal aluminum-doped zinc oxide (AZO) films were prepared by in situ radio frequency (RF) magnetron sputtering (sputtering without annealing) on glass substrates. The influence of deposition parameters on the optoelectronic and structural properties of the in situ deposited quasi-crystal AZO films was investigated in order to compare resulting samples. X-ray diffraction (XRD) patterns show that the quasi-crystal AZO thin films have excellent crystallization improved with increase of the RF power and substrate temperature, with an extremely preferential c-axis orientation exhibit sharp and narrow XRD pattern similar to that of single-crystal. Field emission scanning electron microscopy (FESEM) images show that quasi-crystal AZO thin films have uniform grains and the grain size increase with the increase of RF power and substrate temperature. Craters of irregular size with the columnar structure are observed in the quasi-crystal AZO thin films at a lower substrate temperature while many spherical shaped grains appeared at a higher substrate temperature. The average optical transmittance of all the quasi-crystal AZO films was over 85% in the 400-800 nm wavelength range. The resistivity of 4.176 × 10−4 Ω cm with the grain size of 76.4891 nm was obtained in the quasi-crystal AZO thin film deposited at 300 °C, under sputtering power of 140 W.  相似文献   

2.
The effect of substrate bias on X-ray photoelectron spectroscopy (XPS) study of nitrogen incorporated amorphous carbon (a-C:N) films embedded with nanoparticles deposited by filtered cathodic jet carbon arc technique is discussed. High resolution transmission electron microscope exhibited initially the amorphous structure but on closer examination the film was constituted of amorphous phase with the nanoparticle embedded in the amorphous matrix. X-ray diffraction study reveals dominantly an amorphous nature of the film. A straight forward method of deconvolution of XPS spectra has been used to evaluate the sp3 and sp2 contents present in these a-C:N films. The carbon (C 1s) peaks have been deconvoluted into four different peaks and nitrogen (N 1s) peaks have been deconvoluted into three different peaks which attribute to different bonding state between C, N and O. The full width at half maxima (FWHM) of C 1s peak, sp3 content and sp3/sp2 ratio of a-C:N films increase up to −150 V substrate bias and beyond −150 V substrate bias these parameters are found to decrease. Thus, the parameters evaluated are found to be dependent on the substrate bias which peaks at −150 V substrate bias.  相似文献   

3.
Nanocrystalline indium oxide (INO) films are deposited in a back ground oxygen pressure at 0.02 mbar on quartz substrates at different substrate temperatures (Ts) ranging from 300 to 573 K using pulsed laser deposition technique. The films are characterized using GIXRD, XPS, AFM and UV-visible spectroscopy to study the effect of substrate temperature on the structural and optical properties of films. The XRD patterns suggest that the films deposited at room temperature are amorphous in nature and the crystalline nature of the films increases with increase in substrate temperature. Films prepared at Ts ≥ 473 K are polycrystalline in nature (cubic phase). Crystalline grain size calculation based on Debye Scherrer formula indicates that the particle size enhances with the increase in substrate temperature. Lattice constant of the films are calculated from the XRD data. XPS studies suggest that all the INO films consist of both crystalline and amorphous phases. XPS results show an increase in oxygen content with increase in substrate temperature and reveals that the films deposited at higher substrate temperatures exhibit better stoichiometry. The thickness measurements using interferometric techniques show that the film thickness decreases with increase in substrate temperature. Analysis of the optical transmittance data of the films shows a blue shift in the values of optical band gap energy for the films compared to that of the bulk material owing to the quantum confinement effect due to the presence of quantum dots in the films. Refractive index and porosity of the films are also investigated. Room temperature DC electrical measurements shows that the INO films investigated are having relatively high electrical resistivity in the range of 0.80-1.90 Ωm. Low temperature electrical conductivity measurements in the temperature range of 50-300 K for the film deposited at 300 K give a linear Arrhenius plot suggesting thermally activated conduction. Surface morphology studies of the films using AFM reveal the formation of nanostructured indium oxide thin films.  相似文献   

4.
Thin CdSe films were electron beam evaporated. The CdSe powder synthesized in the laboratory by a chemical method was used as source for the deposition of films. Clean glass and titanium substrates were used as substrates. The substrate temperature was varied in the range of 30-250 °C. X-ray diffraction studies indicated polycrystalline hexagonal structure. The band gap was 1.65 eV. The grain size was 15-30 nm with increase of substrate temperature. Photoconductive cells fabricated with the doped and undoped films have exhibited high photosensitivity and high signal to noise ratio. The current voltage characteristics were linear.  相似文献   

5.
The effect of crystallinity on proton conductivity in amorphous, single crystal and polycrystal yttrium-doped barium zirconate (BYZ) thin films grown 120 nm in thickness on amorphous (quartz) and single crystal MgO(100) substrates has been studied. The conductivity was measured in the temperature range of 150 ~ 350 °C. By altering the film deposition temperature, varying degrees of crystallization and microstructure were observed by x-ray diffraction and transmission electron microscopy. The epitaxial BYZ film grown on MgO(100) substrate at 900 °C showed the highest proton conductivity among other samples with an activation energy of 0.45 eV, whereas polycrystalline and amorphous BYZ films showed lower conductivities due to grain boundaries in their granular microstructure.  相似文献   

6.
In this study, (TiVCrZrHf)N multi-component coatings with quinary metallic elements were deposited by reactive magnetron sputtering system. The composition, structure, and mechanical properties of the coatings deposited at different N2 flow rates were investigated. The (TiVCrZrHf)N coatings deposited at N2 flow rates of 0, 1, and 2 SCCM showed an amorphous structure, whereas those deposited at N2 flow rates of 4 and 6 SCCM showed a simple face-centered cubic solid solution structure. A saturated nitride coating was obtained for N2 flow of 4 SCCM and higher. By increasing N2 flow to 4 SCCM, the hardness and modulus reached a maximum value of 23.8 ± 0.8 and 267.3 ± 4.0 GPa, respectively.  相似文献   

7.
The present work studies the effect of substrate temperature on the growth characteristics of zirconium films prepared by pulsed magnetron sputtering. Formation of α-phase of zirconium was observed in the temperature range 300-873 K. X-ray diffraction of Zr films revealed predominantly [0 0 1] texture. It is noticed that crystallite size increases with increasing substrate temperature. Hexagonal shaped crystallites seem to grow along the surface normal of the substrate for the films deposited at 773 K. Nanoindentation measurements showed that the hardness of the films is in the range 6-10 GPa. The scratch test indicated that the films deposited at higher substrate temperatures had excellent bonding with the substrate and no significant critical failure was noticed up to an applied load of 20 N.  相似文献   

8.
Optically transparent Al2O3 films has been synthesized, on quartz substrates at 500, 600 and 700 °C, from 0.02 M aluminum acetyl acetonate (Al(acac)3) in ethanol, by using ultrasonic spray pyrolysis technique. The films synthesized at 500, 600 and 700 °C are amorphous having average particle sizes 27 ± 6, 18 ± 3 and 14 ± 3, respectively. The films are found to be 95% optically transparent in the visible region. The optical transparency of the films in the ultraviolet region is found to increase with increase in deposition temperature. The observed increase in optical band gap and decrease in refractive index is attributed to the decrease in particle size with increase in deposition temperature. The stoichiometry and chemical bonding of the amorphous film studied using XPS and FTIR spectroscopy revealed the presence chemisorbed oxygen.  相似文献   

9.
Nickel oxide (NiO) thin films were prepared by reactive pulsed laser deposition on thermally oxidized Si substrates in 10 Pa oxygen pressure. The substrate temperature during deposition was varied and its influence on the structural, electrical and nanomechanical properties was studied. It was proved that the structural properties were affected by the increase of substrate temperature improving the crystalline structure. Furthermore, a higher substrate temperature resulted in a thicker NiO film, which was attributed to an increased grain size. This effect influenced the electrical properties, too. Resistivity measurements showed that it increased with the increase of substrate temperature. For the first time, the nanomechanical properties of NiO films were studied. The formation and improvement of crystalline structure affected the nanomechanical properties. Nanoindentation testing of NiO thin films revealed an increase of hardness (H) and elastic modulus (E) and a decrease of surface roughness when increasing the substrate temperature.  相似文献   

10.
Thin films of tantalum oxide (Ta2O5) have been prepared by pulsed laser deposition technique at different substrate temperatures (300-973 K) under vacuum and under oxygen background (pO2 = 2 × 10−3 mbar) conditions. The films are annealed at a temperature of 1173 K. The as-deposited films are amorphous irrespective of the substrate temperature. XRD patterns show that on annealing, the films get crystallized in orthorhombic phase of tantalum pentoxide (β-Ta2O5). The annealed films deposited at substrate temperatures 300 K and 673 K have a preferred orientation along (0 0 1) plane, whereas the films deposited at substrate temperatures above 673 K show a preferred orientation along (2 0 0) crystal plane. The deposited films are characterized using techniques such as grazing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and UV-visible spectroscopy. FTIR and micro-Raman measurements confirm the presence of Ta-O, Ta-O-Ta and O-Ta-O bands in the films. Grain size calculations from X-ray diffraction and AFM show a decrease with increase in substrate temperature. The variation of transmittance and band gap with film growth parameters are also discussed.  相似文献   

11.
Thin films of Ti-B-N with different N contents were deposited on Si(1 0 0) at room temperature by reactive unbalanced close-field dc-magnetron sputtering using three Ti targets and one TiB2 target in an Ar-N2 gas mixture. The effect of N content on bonding structure, microstructure, phase configuration, surface roughness and mechanical properties have been investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), plan-view and cross-sectional high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and microindentation measurements. It was found that the N content significantly affected phase segregation and microstructure. The nitrogen-free TiB0.65 films showed an amorphous compound consisting of Ti and TiB2 (Ti-TiB2). After adding about 28 at.% N, Ti was preferentially bonded to N to form TiN, accompanying with formation of small amounts of TiB and BN bonds. At this stage they combined TiB2 to form a two-phase nanocomposite with microstructures comprising of nanocrystalline (nc-) TiN phase in nitrogen-containing amorphous (a-) TiB2 matrix. Addition of more N promoted formation of BN bonding at cost of TiB2, which resulted in formation of nanocomposite nc-TiN/a-(TiB2, BN) thin films. A small grain less than 8 nm in size was found at low N content, and the grain size increased with increasing N content. A low microhardness value of about 20 GPa was obtained in the amorphous Ti-TiB2 compound, and a maximum microhardness value of about 50 GPa was achieved in nc-TiN/a-TiB2. A decrease of microhardness took place after formation of BN (i.e. amorphous matrix composed by both TiB2 and BN) with further increasing N content, and a hardness value of about 35 GPa was followed at high N contents. The surface roughness strongly depended on the phase configuration. The higher the mole fraction of nanocrystalline TiN phase, the rougher the surface became.  相似文献   

12.
The structural, morphological, optical and electrical properties of ZnTe films deposited by evaporation were investigated as a function of substrate temperature (at −123 and 27 °C) and post-deposition annealing temperature (at 200, 300 and 400 °C). It was determined that films deposited at both substrate temperatures were polycrystalline in nature with zinc-blende structure and a strong (1 1 1) texture. A small Te peak was detected in XRD spectra for both substrate temperatures, indicating that as-deposited ZnTe films were slightly rich in Te. Larger grains and a tighter grain size distribution were obtained with increased substrate temperature. Scanning electron microscopy (SEM) studies showed that the microstructures of the as-deposited films agreed well with the expectations from structure zone model. Post-deposition annealing induced further grain growth and tightened the grain size distribution. Annealing at 400 °C resulted in randomization in the texture of films deposited at both substrate temperatures. Optical spectroscopy results of the films indicated that the optical band gap value increased from 2.13 to 2.16 eV with increased substrate temperature. Increasing the annealing temperature sharpened the band-edge. Resistivity measurements showed that the resistivity of films deposited at substrate temperatures of −123 and 27 °C were 32 Ω cm, and 1.0 × 104 Ω cm, respectively with corresponding carrier concentrations of 8.9 × 1015 cm−3 and 1.5 × 1014 cm−3. Annealing caused opposite changes in the film resistivity between the samples prepared at substrate temperatures of −123 and 27 °C.  相似文献   

13.
In this work, SmCo5 thin films are deposited on single crystal MgO (1 0 0) and amorphous glass substrates with a Cr underlayer at 400 °C by sputtering. A comparison study shows that the microstructures and magnetic properties are different in the two SmCo5 films on the MgO (1 0 0) and glass substrates, respectively. An epitaxial growth of Cr-(2 0 0)〈1 1 0〉/SmCo5-(1 1 2¯ 0)〈0 0 0 1〉 is achieved on the MgO (1 0 0) single crystal substrate with an average grain size of 20 nm for SmCo5. On the amorphous glass substrate, no significant crystallographic texture is found in the Cr underlayer. After the deposition of SmCo5, a weak texture of (1 1 2¯ 0) is observed with an average grain size of 8 nm. High remanence ratio value in this film is probably due to strong exchange coupling. Both SmCo5 films show high in-plane coercivity, high in-plane anisotropy and remanence enhancement.  相似文献   

14.
(Pb,Ca)TiO3 (PCT) thin films have been deposited on Pt/Ti/SiO2/Si substrate by metal-organic decomposition (MOD) technique. The film processing parameters such as drying and annealing temperatures have been optimized to obtain good-quality PCT films. Compositional analysis of the film has been studied by X-ray photoelectron spectroscopy (XPS). The effect of the annealing temperature on the crystalline structure, microstructure and electrical properties have been investigated by X-ray diffraction, atomic force microscopy (AFM) and impedance analyzer, respectively. Amorphous PCT films form at 350 °C and crystallize in the perovskite phase following the isothermal annealing at ?650 °C for 3 h in oxygen ambient. Typical tetragonal structure of the PCT film is evidenced from X-ray diffraction pattern. The grain size in the PCT films increases with an increase in annealing temperature. Significant improvement in the dielectric constant value is observed as compared to other reported work on PCT films. The observed dielectric constant and dissipation factor at 100 kHz for 650 °C annealed PCT films are 308 and 0.015, respectively. The correlation of the film microstructural features and electrical behaviors is described.  相似文献   

15.
Nanostructured bismuth ferrite (BiFeO3) thin films were deposited on glass substrate by the sol-gel process. The as-fired film at 250 °C was found to be amorphous crystallizing to pure rhombohedral phase after annealing at 450 °C for 2 h in air. The XRD pattern shows that the sample is polycrystalline in nature. The average grain size of the film calculated from the XRD data was found to be 16 nm. The as-fired film show high transmittance that decreases after crystallization. The absorption edge of the films was found to be sharper and shifting towards the lower energy as the annealing temperature increases. The optical energy band gaps of the amorphous and crystalline films were found to be 2.63 and 2.31 eV, respectively. The refractive indices of the amorphous and crystalline films were 2.05 and 2.26, respectively.  相似文献   

16.
Si doped zinc oxide (SZO, Si3%) thin films are grown at room temperature on glass substrates under argon atmosphere, using direct current magnetron sputtering. The influence of the target substrate distances on structure, morphology, optical and electrical properties of SZO thin films is investigated. Experimental results show that the target substrate distances have a significance impact on the growth rate, crystal quality and electrical properties of the films, and have little impact on the optical properties of the films. SZO thin film samples grown on glasses are polycrystalline with a hexagonal wurtzite structure and have a preferred orientation along the c-axis perpendicular to the substrate. When the target substrate distance decreases from 76 to 60 mm, the degree of crystallization of the films increased, the grain size increases, and the resistivity of films decreases. However, when the distance continuously decreases from 60 to 44 mm, the degree of crystallization of the films decreased, the grain size decreases, and the resistivity of the films increases. SZO(3%) thin films deposited at a target substrate distance of 60 mm show the lowest resistivity of 5.53 × 10−4 Ω cm, a high average transmission of 94.47% in the visible range, and maximum band gap of 3.45 eV under 5 Pa of argon at sputtering power of 75 W for sputtering time of 20 min.  相似文献   

17.
M. Din 《Applied Surface Science》2006,252(15):5508-5511
Cadmium arsenide is a II-V semiconductor, exhibiting n-type intrinsic conductivity with high mobility and narrow bandgap. It is deposited by thermal evaporation, and has shown the Schottky and Poole-Frenkel effects at high electric fields, but requires further electrical characterisation. This has now been extended to low-field van der Pauw lateral resistivity measurements on films of thickness up to 1.5 μm. Resistivity was observed to decrease with increasing film thickness up to 0.5 μm from about 3 × 10−3 Ω m to 10−5 Ω m, where the crystalline granular size increases with film thickness. This decrease in resistivity was attributed to a decrease in grain boundary scattering and increased mobility. Substrate temperature during deposition also influenced the resistivity, which decreased from around 10−4 Ω m to (10−5 to 10−6) Ω m for an increase in substrate deposition temperature from 300 K to 423 K. This behaviour appears to result from varying grain sizes and ratios of crystalline to amorphous material. Resistivity decreased with deposition rate, reaching a minimum value at about 1.5 nm s−1, before slowly increasing again at higher rates. It was concluded that this resulted from a dependence of the film stoichiometry on deposition rate. The dependence of resistivity on temperature indicates that intercrystalline barriers dominate the conductivity at higher temperatures, with a hopping conduction process at low temperatures.  相似文献   

18.
An aqueous solution of cupric nitrate trihydrate (Cu(NO3)2·3H2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.  相似文献   

19.
Fluorine doped SnO2 films have been successfully prepared at optimized substrate temperature of 723 K by spray pyrolysis technique. The XRD analysis confirmed that films deposited with F/Sn ratio of 0.05 showed a partial amorphous nature whereas films deposited with F/Sn = 0.10 exhibited tetragonal structure (2 0 0) as the preferred orientation and polycrystalline structure. The lattice constants were found to be a = 0.4750 and c = 0.3197 nm. The theoretically constructed XRD pattern for SnO2 was used to compare with experimental pattern, the difference between them is discussed. By using SEM analysis, the surface morphology of the films was observed as an effect of the variation of F/Sn ratio. At low temperature, the mobility due to lattice, polar, impurity, grain boundary and neutral scattering was estimated for SnO2 and the possible scattering mechanisms were assigned to SnO2:F films using experimentally obtained electrical data. The Mott parameters were determined by applying variable range hopping (VRH) conduction mechanism for SnO2:F films (F/Sn = 0.05) where band conduction mechanism shifted to VRH conduction at below about 250 K.  相似文献   

20.
Bi3TiNbO9:Er3+:Yb3+ (BTNEY) thin films were fabricated on fused silica by pulsed laser deposition. It was demonstrated that different laser fluence and substrate temperature during growth of BTNEY upconversion photoluminescence (UC-PL) samples control the film’s grain size and hence influences the UC-PL properties. The average grain size of BTNEY thin films deposited on fused silica substrates with laser fluence 4, 5, 6, and 7 J/cm2 are 30.8, 35.9, 40.6, and 43.4 nm, respectively. The 525 nm emission intensities increase with the deposition laser fluence and the emission intensities of BTNEY thin film deposited under 700 and 600 °C are almost 24 and 4 times, respectively, as strong as those of samples under 500 °C. The grain size of BTNEY thin film increases with the increasing temperature. UC-PL of BTNEY films is enhanced by increasing grain size of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号