首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
α-Fe2O3/MWCNTs composites were prepared by a simple hydrothermal process. The crystalline structure and the electrochemical performance of the as-synthesized samples were investigated. Results show that as anode materials for lithium-ion batteries, the α-Fe2O3/MWCNTs exhibit an initial discharge capacity of 1256 ± 5 mAh g−1 and a stable specific discharge capacity of 430 ± 5 mAh g−1 at ambient temperature, for up to 100 cycles with no noticeable capacity fading, while the initial discharge capacity of the bare Fe2O3 is 992.3 mAh g−1, and the discharge capacity is 146.6 mAh g−1 after 100 cycles. Moreover, the α-Fe2O3/MWCNTs composites also exhibit excellent rate performance.  相似文献   

2.
Mesoporous γ-Fe2O3/SiO2 nanocomposite containing 30 mol% of γ-Fe2O3 was prepared by a template-free sol-gel method, and its removal ability for methyl orange (MO) was investigated. The nanocomposite was characterized using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared (FTIR) absorption measurements, nitrogen adsorption-desorption measurements, and magnetic measurements. The synthesized γ-Fe2O3/SiO2 nanocomposite has a mesoporous structure with an average pore size of 3.5 nm and a specific surface area of 245 m2/g, and it exhibits ferrimagnetic characteristics with the maximum saturation magnetization of 20.9 emu/g. The adsorption of MO on the nanocomposite reaches the maximum adsorbed percentage of ca. 80% within a few minutes, showing that most of MO can be removed in a short time. The MO adsorption data fit well with both Langmuir and Freundlich adsorption isotherms. The maximum adsorption capacity of MO is estimated to be 476 mg/g.  相似文献   

3.
A simplified method for synthesis of polyacrylic acid-bound iron oxide magnetic nanoparticles (Fe3O4@PAA NPs) was reported. The as-prepared nanoparticles were characterized by TEM, FT-IR, VSM and XRD. Characterization results indicated that PAA was successfully introduced onto the surface of Fe3O4 and did not cause any changes in magnetic property. The Fe3O4@PAA NPs were used to adsorb rhodamine 6G (R6G) as a model basic dye pollutant from aqueous solution. Kinetics data and adsorption isotherms were better fitted by pseudo-second-order kinetic model and Langmuir isotherm, respectively. The adsorption equilibrium could be reached at about 20 min, showing that the as-prepared adsorbent exhibited extremely rapid adsorption rate. The aqueous solution of the Yellow River was chosen as the test sample, and the results showed that the magnetic adsorbent was efficient for the removal of the basic dye in the real sample.  相似文献   

4.
Firstly, the coordination processes of line-type polyethyleneimine with Cu2+, Cd2+ and Zn2+ were studied by using visible light absorption spectroscopy and chelation conductivity titration method, and the structures of the chelates were determined. Afterwards, polyethyleneimine (PEI) was grafted onto the surface of silica gel particles via the coupling effect of γ-chloropropyl trimethoxysilane (CP), and the novel composite adsorption material PEI/SiO2 with strong adsorption ability towards heavy-metal ions was prepared. The chelating adsorption properties of PEI/SiO2 for Cu2+, Cd2+ and Zn2+ were researched by both static (batch) and dynamic (flow) methods. The experiment results show that water-soluble polyamine PEI with line-type structure reacts with Cu2+, Cd2+ and Zn2+ easily and quantitatively, and water-soluble chelates with four ligands are formed. The composite material PEI/SiO2 possesses very strong chelating adsorption ability for heavy-metal ions, and the saturated adsorption amount can reach 25.94 mg g−1 and 50.01 mg g−1 for Cu2+ under static and dynamic conditions, respectively. The isothermal adsorption data fit to Langmuir equation, and the adsorption is typical chemical adsorption with monomolecular layer. The adsorbing ability of PEI/SiO2 towards the three kinds of the ions follows the order of Cu2+ > Cd2+ > Zn2+. The pH value has great influence on the sorption, and at pH 6-7, the adsorption capacity is the greatest. The fact that adsorption capacity increases with temperature rising indicates the adsorbing process of PEI/SiO2 for metal ions is endothermic. As diluted hydrochloric acid is used as eluent, the adsorbed heavy-metal ions are eluted easily from PEI/SiO2, and the regeneration and reuse without decreasing sorption for PEI/SiO2 are demonstrated.  相似文献   

5.
A new ion-imprinted amino-functionalized silica gel sorbent was synthesized by the hydrothermal-assisted surface imprinting technique using Cd2+ as the template, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AAAPTS) as the functional monomer, and epichlorohydrin as the cross-linking agent (IIP-AAAPTS/SiO2) for the selective removal of Cd2+ from aqueous solution, and was characterized by FTIR, SEM, nitrogen adsorption and the static adsorption-desorption experiment method. The specific surface area of the IIP-AAAPTS/SiO2 sorbents was found to be 149 m2 g−1. The results showed that the maximum static adsorption capacities of IIP-AAAPTS/SiO2 sorbents by hydrothermal heating method and by the conventional heating method were 57.4 and 31.6 mg g−1, respectively. The IIP-AAAPTS/SiO2 sorbents offered a fast kinetics for the adsorption and desorption of Cd(II). The relative selectivity coefficients of IIP-AAAPTS/SiO2 sorbents for Cd2+/Co2+, Cd2+/Ni2+, Cd2+/Zn2+, Cd2+/Pb2+ and Cd2+/Cu2+ were 30.68, 14.02, 3.00, 3.12 and 6.17, respectively. IIP-AAAPTS/SiO2 sorbents had a substantial binding capacity in the range of pH 4-8 and could be used repeatedly. Equilibrium data fitted perfectly with Langmuir isotherm model compared to Freundlich isotherm model. Kinetic studies indicated that adsorption followed a pseudo-second-order model. Negative values of ΔG° indicated spontaneous adsorption and the degree of spontaneity of the reaction increased with increasing temperature. ΔH° of 26.13 kJ mol−1 due to the adsorption of Cd2+ on the IIP-AAAPTS/SiO2 sorbents indicated that the adsorption was endothermic in the experimental temperature range.  相似文献   

6.
First-principle calculations based on density function theory (DFT) are used to clarify the roles of γ-Fe2O3 in fly ash for removing mercury from coal-fired flue gases. In this study, the structure of key surface of γ-Fe2O3 is modeled and spin-polarized periodic boundary conditions with the partial relaxation of atom positions are employed. Binding energies of Hg on γ-Fe2O3 (0 0 1) perfect and defective surfaces are calculated for different adsorption sites and the potential adsorption sites are predicted. Additionally, electronic structure is examined to better understand the binding mechanism. It is found that mercury is preferably adsorbed on the bridge site of γ-Fe2O3 (0 0 1) perfect surface, with binding energy of −54.3 kJ/mol. The much stronger binding occurs at oxygen vacancy surface with binding energy of −134.6 kJ/mol. The calculations also show that the formation of hybridized orbital between Hg and Fe atom of γ-Fe2O3 (0 0 1) is responsible for the relatively strong interaction of mercury with the solid surface, which suggests that the presently described processes are all noncatalytic in nature. However, this is a reflection more of mercury's amalgamation ability.  相似文献   

7.
Using cherry stones, the preparation of activated carbon has been undertaken in the present study by chemical activation with potassium hydroxide. A series of KOH-activated products was prepared by varying the carbonisation temperature in the 400-900 °C range. Such products were characterised texturally by gas adsorption (N2, −196 °C), mercury porosimetry, and helium and mercury density measurements. FT-IR spectroscopy was also applied. The carbons prepared as a rule are microporous and macroporous solids. The degree of development of surface area and porosity increases with increasing carbonisation temperature. For the carbon heated at 900 °C the specific surface area (BET) is 1624 m2 g−1, the micropore volume is 0.67 cm3 g−1, the mesopore volume is 0.28 cm3 g−1, and the macropore volume is 1.84 cm3 g−1.  相似文献   

8.
The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H2SO4. The surface area of chemically modified activated carbon was 741.2 m2 g−1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g−1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol−1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.  相似文献   

9.
Hybrid polypyrrole (PPy)/α-Fe2O3 nanocomposite films were fabricated by spin coating on a glass substrate. X-Ray diffraction analysis revealed the crystalline structure of α-Fe2O3 nanostructures and the nanocomposites. The broad PPy peak weakened in intensity as the α-Fe2O3 content increased in PPy/α-Fe2O3 nanocomposites. Characteristic Fourier-transform IR peaks for pure PPy shifted to higher wavenumbers on addition of α-Fe2O3 to PPy/α-Fe2O3 nanocomposites. This can be attributed to better conjugation and interactions between PPy and α-Fe2O3 nanoparticles. Field-emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy images of the nanocomposites reveal a uniform distribution of α-Fe2O3 nanoparticles in the PPy matrix. UV-vis absorption spectroscopy revealed a blue shift from λmax= 441 nm for PPy to λmax= 392 nm for PPy/α-Fe2O3, reflecting strong interactions between PPy and α-Fe2O3 nanoparticles. The room-temperature dc electrical conductivity increased from 4.33×10−9 to 1.81×10−8 S/cm as the α-Fe2O3 nanoparticle content increased from 10 to 50 wt.% in PPy/α-Fe2O3 nanocomposites.  相似文献   

10.
Three activated carbons (ACs) for the electrodes of supercapacitor were prepared from cationic starch using KOH, ZnCl2 and ZnCl2/CO2 activation. The BET surface area, pore volume and pore size distribution of the ACs were evaluated using density functional theory method, based on N2 adsorption isotherms at 77 K. The surface morphology was characterized with SEM. Their electrochemical performance in prototype capacitors was determined by galvanostatic charge/discharge characteristics and cyclic voltammetry, and compared with that of a commercial AC, which was especially prepared for use in supercapacitors. The KOH-activated starch AC presented higher BET surface area (3332 m2 g−1) and larger pore volume (1.585 cm3 g−1) than those of the others, and had a different surface morphology. When used for the electrodes of supercapacitors, it exhibited excellent capacitance characteristics in 30 wt% KOH aqueous electrolytes and showed a high specific capacitance of 238 F g−1 at 370 mA g−1, which was nearly twice that of the commercial AC.  相似文献   

11.
A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe2O3)/silica (SiO2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe3O4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe3O4 to γ-Fe2O3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 °C feature spherical shape and uniform particle size (dparticle=1.72 μm), high saturation magnetization (Ms=17.22 emu/g), superparamagnetism (Mr/Ms=0.023), high surface area (SBET=240 m2/g), and mesoporosity (dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO2 nanoparticles, in which cubic γ-Fe2O3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 °C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.  相似文献   

12.
Large-pore-size (150 nm) polystyrene (PSt) microspheres were carboxylated with phthalic anhydride (PA) through Friedel-Crafts acetylation to study the adsorption of 2,4,6-trinitrotoluene (TNT) on this material from aqueous solution. The scanning electron microscope (SEM) images and mercury porosimetry measurements (MPM) of the microspheres showed that the pore structure was unchanged during the reaction. High adsorption capacity (11.2 mg g−1 of suction-dried adsorbent) and adsorption rate (33.9 mg g−1 h−1) for TNT were observed during the study. As shown by the adsorption isotherm, the adsorption of TNT on PA-PSt can be described by the Freundlich adsorption equation, indicating heterogeneous adsorption process. On-column adsorption of TNT on PA-PSt and elution indicated that TNT can be completely removed from aqueous solution and condensed into acetone.  相似文献   

13.
The natural zeolite tuff (clinoptilolite) from a Serbian deposit has been studied as adsorbent for Ni(II) ions from aqueous solutions. Its sorption capacity at 298 K varies from 1.9 mg Ni g−1 (for the initial solution concentration of 100 mg Ni dm−3) to 3.8 mg Ni g−1 (for C0 = 600 mg Ni dm−3) and it increases 3 times at 338 K. The sorption is best described by the Sips isotherm model. The sorption kinetics follows the pseudo-second-order model, the activation energies being 7.44, 5.86, 6.62 and 6.63 kJ mol−1 for C0 = 100, 200, 300 and 400 mg Ni dm−3, respectively. The sorption involves a film diffusion, an intra-particle diffusion, and a chemical cation-exchange between the Na+ ions of clinoptilolite and the Ni2+ ions. The sorption is endothermic (ΔH° being 37.9, 33.4, 30.0, 27.7 and 24.3 kJ mol−1 for C0 = 100, 200, 300, 400 and 600 mg Ni dm−3, respectively) and spontaneous in the 298-338 K temperature range. Thermal treatment of the Ni(II)-loaded clinoptilolite results in the formation of spherical nano-NiO particles of approx. 5 nm in diameter which are randomly dispersed in the clinoptilolite lattice.  相似文献   

14.
Polyvinylbenzene (PVB, namely polystyrene, PSt) was grafted on the surface of silica gel particles by “grafting from” in solution polymerization system, and grafting particles PVB/SiO2 were obtained. The chloromethylation reaction of the grafted polyvinylbenzene was performed using a novel chloromethylation reagent, 1,4-bis (chloromethyoxy) butane that is un-carcinogenic, and grafting particles CMPVB/SiO2 were obtained. Subsequently, chloromethyl groups on grafting particles CMPVB/SiO2 were hydrolyzed and oxidized, and finally adsorption material polyvinylbenzyl acid/SiO2 (PVBA/SiO2) was prepared. The adsorption performances and mechanism of 2,4,6-trinitrotoluene (TNT) on PVBA/SiO2 were investigated through static methods. The experimental results showed that PVBA/SiO2 possessed strong adsorption ability for TNT with adsorption amount of 26.84 mg g−1. The empirical Freundlich isotherm was also found to agree well with the equilibrium adsorption data. In addition, pH was found to have great influence on the adsorption amount. Finally, PVBA/SiO2 was observed to possess excellent reusability as well.  相似文献   

15.
Magnetic measurements have been performed on 40-nm sphere-like Fe3 − δO4 (δ=0.043) nanoparticles using a Quantum Design vibrating sample magnetometer. Coating Fe3 − δO4 nanoparticles with SiO2 effectively eliminates magnetic interparticle interactions so that the coercive field HC in the high-temperature range between 300 K and the Curie temperature (855 K) can be well fitted by an expression for noninteracting randomly oriented single-domain particles. From the fitting parameters, the effective anisotropy constant K is found to be (1.38±0.11)×105 erg/cm3, which is very close to the bulk magnetocrystalline anisotropy constant of 1.35×105 erg/cm3. Moreover, the inferred mean particle diameter from the fitting parameters is in quantitative agreement with that determined from transmission electron microscope. Such a quantitative agreement between data and theory suggests that the ensemble of our SiO2-coated sphere-like Fe3 − δO4 nanoparticles represents a good system of noninteracting randomly-oriented single-domain particles.  相似文献   

16.
Highly ordered mesoporous Co3O4, NiO, and their metals were synthesized by nanocasting method using there corresponding mesoporous SBA-15 silica as a template. The obtained porous metal oxides have high surface areas, large pore volume, and a narrow pore size distribution. The N2-adsorption data for mesoporous metal oxides have provided the BET area of 257.7 m2 g−1 and the total pore volume of 0.46 cm3 g−1. The mesoporous metals were employed as a catalyst in the synthesis of (S)-3-pyrrolidinol from chiral (S)-4-chloro-3-hydroxybutyronitrile, and a high yield to (S)-3-pyrrolidinol-salt was obtained on the mesoporous Co metal catalyst.  相似文献   

17.
Platelet γ-Fe2O3 particles of particle size less than 100 nm were prepared for medical applications that use the hysteresis-loss heating of ferromagnetic particles. The γ-Fe2O3 particles were obtained through the dehydration, reduction, and oxidation of platelet α-FeOOH particles, which were synthesized by the precipitation of ferric ions in an alkaline solution containing ethanolamine, and the crystals grown using a hydrothermal treatment. The γ-Fe2O3 particles contained dimples formed by the dehydration of α-FeOOH particles. The coercive force and the saturation magnetization of the γ-Fe2O3 particles were in the ranges 11.9 to 12.7 kA/m (150 to 160 Oe), and 70 to 72 Am2/kg (70 to 72 emu/g), respectively. The specific loss power of the γ-Fe2O3 particles, estimated from their temperature-raising property measured under a peak magnetic field of 50.9 kA/m (640 Oe) and at a frequency of 117 kHz, was 590 W/g. This value is higher than that of spherical cobalt-containing iron oxide particles having equivalent coercive force and saturation magnetization, reflecting the larger area of the minor hysteresis loop measured under a peak magnetic field of 50.9 kA/m (640 Oe).  相似文献   

18.
Mn-Zn ferrite powders (Mn0.5Zn0.5Fe2O4) were prepared by the nitrate-citrate auto-combustion method and subsequently annealed in air or argon. The effects of heat treatment temperature on crystalline phases formation, microstructure and magnetic properties of Mn-Zn ferrite were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and vibrating sample magnetometer. Ferrites decomposed to Fe2O3 and Mn2O3 after annealing above 550 °C in air, and had poor magnetic properties. However, Fe2O3 and Mn2O3 were dissolved after ferrites annealing above 1100 °C. Moreover, the 1200 °C annealed sample showed pure ferrite phase, larger saturation magnetization (Ms=48.15 emu g−1) and lower coercivity (Hc=51 Oe) compared with the auto-combusted ferrite powder (Ms=44.32 emu g−1, Hc=70 Oe). The 600 °C air annealed sample had the largest saturation magnetization (Ms=56.37 emu g−1) and the lowest coercivity (Hc=32 Oe) due to the presence of pure ferrite spinel phase, its microstructure and crystalline size.  相似文献   

19.
γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02 g, 15 mg L−1, 4 min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04 mg g−1 for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed.  相似文献   

20.
Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m2 g−1, Vmi of 0.39 cm3 g−1 and a iodine retention capacity of 429.3 mg g−1): carbon C (gasification with CO2 at 850 °C during 1 h), with SBET of 523 m2 g−1, Vmi of 0.33 cm3 g−1 and a iodine retention capacity of 402.5 mg g−1, and carbon D (gasification with CO2 at 900 °C during 1 h), whose SBET is 672 m2 g−1, Vmi is 0.28 cm3 g−1 and has a iodine retention capacity of 345.2 mg g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号