首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CdS/TiO2 nanocomposites were prepared via a simple wet chemical method, and characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their ability to degrade Acid Rhodamine B was investigated under visible light irradiation. The results indicate that CdS/TiO2 nanocomposite with a mass ratio of 4:1(TiO2:CdS) showed high photocatalytic activity and the CdS loaded on TiO2 nanotube surface exhibited a hexagonal phase. The dispersion of CdS on TiO2 nanotube surface had an important effect on the degradation efficiency of pollutant, which provides a strategy for practical industry application.  相似文献   

2.
Fluoropolymer poly-vinylidene-fluoride modified TiO2 (PVDF/TiO2) were prepared via a simple chemisorption approach and characterized by thermo gravimetric analyse, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence spectra. The modified mechanism and the photocatalytic selectivity of the PVDF/TiO2 were studied. The existence of Ti-F coordination bond on the interface between TiO2 and PVDF was confirmed. For the PVDF modification, the photocatalytic degradation (PCD) of cationic dye was greatly enhanced, and the PCD of anionic dye was obviously inhibited. PVDF/TiO2 shows high photocatalytic selectivity than that of TiO2 by degrading mixed solution of cationic dyes MB and anionic dyes MO. The selectivity can be tuned by changing the PVDF modification amount.  相似文献   

3.
Composite photocatalysts composed of TiO2 and ZrO2 have been prepared via the sol-gel method. The as-prepared nanocomposites are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrometry and fluorescence emission spectra. The results shows that TiO2/ZrO2 nanocomposites are composed of mainly anatase titania and tetragonal ZrO2. Incorporating TiO2 particles with ZrO2 plays an important role in promoting the formation of nanoparticles with an anatase structure and leads to decreased fluorescence emission intensity. Most of the TiO2/ZrO2 nanocomposites exhibited comparable photocatalytic activity compared with commercial TiO2 for the degradation aqueous methyl orange (MO) under ultraviolet irradiation, while the composite with Zr/Ti mass ratio of 15.2% shows the highest photocatalytic performances. Furthermore, the as-prepared nanocomposites can be reused with little photocatalytic activity loss. Without any further treatment besides rinsing, the photocatalytic activity of TiO2/ZrO2 (15.2%) composites is still higher than after five-cycle utilization.  相似文献   

4.
Branched rutile TiO2 nanorod arrays were directly synthesized on the F-doped tin oxide (FTO) substrate through a two-step hydrothermal treatment by a seeding method with TiO2-nanorods as seeds. The samples were characterized respectively by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and field-emission scanning electron microscopy (FESEM). Results showed that TiO2 nanorods with nanobranches (TiO2-NB) grew vertically on the FTO substrate. XRD and HRTEM results confirmed that the TiO2-NB arrays were single-crystalline rutile. The optical properties of the samples were studied with a UV-vis spectrometer. The photocatalytic activity of the TiO2-NB film is better than that of P25 particulate film. Direct electrical pathway and improved light-harvesting efficiency were crucial for the superior photocatalytic activity of the TiO2-NB arrays.  相似文献   

5.
TiO2 nanocrystals modified by ethoxy groups were prepared by a facile nonhydrolytic solvothermal method and characterized by XRD, TEM, TG-DTA and XPS, which showed an enhanced visible-light photocatalytic activity on the degradation of Rhodamine B compared with TiO2 modified by benzyloxy groups and the “naked” TiO2. The adsorption and degradation pathway of Rhodamine B on TiO2 modified by ethoxy groups were also investigated. The zeta-potential (ζ) results showed that the TiO2 modified by ethoxy groups had high negative surface charge, which incited the positive -N(Et)2 group of RhB absorbing on the TiO2 surface and preferably led the N-dealkylation pathway under visible light irradiation.  相似文献   

6.
Anatase-type TiO2 nanopowders less than 10 nm in average diameter were synthesized by a chemical vapor synthesis method. The TiO2 nanopowders showed very poor photocatalytic properties, in spite of their large surface area. With subsequent heat treatment of the TiO2 powders, their photocatalytic properties determined by measuring the degradation of 2-propanol were improved at temperatures up to 600 °C and then diminished along with formation of a rutile phase. This improvement in the photocatalytic properties of TiO2 nanopowders was attributed to both a morphology change and a change in the electronic surface characteristics of TiO2 particles during heat treatment.  相似文献   

7.
Activated carbon (AC) supported Zn2+–TiO2 photocatalyst was prepared by sol–gel method. The prepared samples were characterized by X-ray diffraction, scanning electron micrograph, nitrogen absorption, diffuse reflectance UV/VIS and X-ray photoelectron spectroscopy. Using toluene as a pollution target, the photocatalytic activity of photocatalyst was evaluated. The results showed that prepared photocatalyst was obviously helpful for the removal of toluene in air. The photocatalytic degradation of toluene by Zn2+–TiO2/AC reached 100% for 40 min and remained 75% after 160 min, while degradation by TiO2 was only 30%. It indicated that the photocatalytic activity of prepared photocatalyst was enhanced. It is due to Zn2+-doping increased the oxidation and reduction of hole–electron pairs, which was the important factor in heterogeneous photocatalysis.  相似文献   

8.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

9.
This paper seeks to determine the optimal settings for the deposition parameters, for TiO2 thin film, prepared on non-alkali glass substrates, by direct current (dc) sputtering, using a ceramic TiO2 target in an argon gas environment. An orthogonal array, the signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. Using the Taguchi method for design of a robust experiment, the interactions between factors are also investigated. The main deposition parameters, such as dc power (W), sputtering pressure (Pa), substrate temperature (°C) and deposition time (min), were optimized, with reference to the structure and photocatalytic characteristics of TiO2. The results of this study show that substrate temperature and deposition time have the most significant effect on photocatalytic performance. For the optimal combination of deposition parameters, the (1 1 0) and (2 0 0) peaks of the rutile structure and the (2 0 0) peak of the anatase structure were observed, at 2θ ∼ 27.4°, 39.2° and 48°, respectively. The experimental results illustrate that the Taguchi method allowed a suitable solution to the problem, with the minimum number of trials, compared to a full factorial design. The adhesion of the coatings was also measured and evaluated, via a scratch test. Superior wear behavior was observed, for the TiO2 film, because of the increased strength of the interface of micro-blasted tools.  相似文献   

10.
Ming Li 《Applied Surface Science》2008,254(13):3762-3766
Preparation of anatase type titania nanoparticles and their carbon modification were synchronously achieved by the solvothermal method with glycerol as the carbon source. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectra (DRS). It was found that the glycerol/ethanol ratio affected significantly the morphology and properties of TiO2/C composites. The TiO2/C composite which was obtained in the solution with the glycerol/ethanol ratio of 5/75, contained 1.2 mass% carbon and exhibited both superior adsorption capability and visible-light photocatalytic activity. Contrary to this, samples prepared in the solution with higher glycerol/ethanol ratio, exhibited lower photocatalytic activity similar to that of the titania without carbon modification. It was suggested that excess addition of glycerol might contribute to large amounts of carbonaceous species and severe aggregation of the as-prepared samples, and thus reduced the surface area. As a result, the adsorption capability and visible-light photocatalytic activity increased at first and then decreased with the increase of glycerol addition. Present study provided a facile one-step method to obtain TiO2/C composites with a controllable carbon content and photocatalytic performance under mild temperature.  相似文献   

11.
Jing Cao 《Applied Surface Science》2011,257(16):7083-7089
In this paper, a novel composite photocatalyst AgI/AgCl/TiO2 was prepared by ion exchange method and characterized by XRD, SEM and UV-Vis spectrometry. The as-prepared AgI/AgCl/TiO2 composites show much higher photocatalytic activity than AgCl/TiO2 and AgI/TiO2 under visible-light irradiation (λ > 400 nm) in the process of methyl orange (MO) degradation. When the molar percentage of AgI to initial AgCl is 20% (sample SE-20%), the maximal degradation efficiency of MO has reached 85.8% after irradiation for 120 min. The enhancement of photocatalytic activity of the composite photocatalyst AgI/AgCl/TiO2 will be attributed to its good absorption in the visible-light region, especially low recombination rate of the electron-hole pairs based on the photoluminescence (PL) spectra investigation of AgI/AgCl/TiO2 and the matching band structures of AgI, AgCl and TiO2. The detection of reactive species by radical scavengers displays that O2 and H2O2 are the main reactive species for the degradation of MO under visible-light irradiation. Moreover, PL analysis by using terephthalic acid (TA) as a probe molecule further reveals that OH can be negligible for the degradation of MO.  相似文献   

12.
The photocatalyst B and N codoped TiO2 (B-N-TiO2) was prepared via the sol-gel method by using boric acid and ammonia as B and N precursors. The doping mode, band structure and photocatalytic mechanism of B-N-TiO2 were investigated well and elucidated in detail. B-N-TiO2 showed the narrowed band gap and thus extended the optical absorption due to interstitial N and [NOB] species in the TiO2 crystal lattice. The coexistence of interstitial N and [NOB] species in the TiO2 crystal lattice and surface NOx species allowed the more efficient utilization of visible light. Simultaneously, interstitial [NOB] and N species and surface B2O3 and NOx species facilitated the separation of photo generated electrons and holes and suppress their recombination effectively. Hence, B-N-TiO2 showed a higher photocatalytic activity than pure TiO2, N-doped TiO2 (N-TiO2) and B-doped TiO2 (B-TiO2) under both UV and visible light irradiation.  相似文献   

13.
A novel copper and sulfur codoped TiO2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl2·2H2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO2 catalyst has higher activity than undoped and Cu or S doped TiO2 catalysts.  相似文献   

14.
Highly ordered TiO2 nanotubes with different tube length were fabricated by anodization using C2H2O4·2H2O containing 0.5 wt.% NH4F (electrolyte A) and anhydrous dimethyl sulfoxide containing 1% HF (electrolyte B), respectively. Then cathodic reduction method was used to dope Pt in TiO2 nanotubes in chloroplatinic acid. The results indicated that cathodic reduction could efficiently platinize TiO2 nanotubes. Pt-doped TiO2 nanotubes with the longer length had the higher photocatalytic activity for degrading methyl orange under UV and visible irradiation. The longer tube length has a positive effect on the photocatalytic activity of Pt-doped TiO2 nanotubes. Besides, as the content of anatase further decreases, the photocatalytic activity drops gradually due to the reduction reaction in the surface area.  相似文献   

15.
TiO2/SiOx double-layers have been prepared at room temperature by RF magnetron sputtering. The TiO2 top-layer was deposited in an Ar atmosphere, while the SiOx bottom-layer was deposited in an Ar/O2 atmosphere. Samples were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and photoluminescence techniques. The photocatalytic activity of the samples was evaluated by the photodegradation of methylene blue; the results showed that the photocatalytic activity of the TiO2/SiOx double-layers was superior to that of the TiO2 single-layers. The presence of the SiOx bottom-layer improved the photocatalytic activity of the TiO2 layer because it may act as a trap for electrons generated in the TiO2 layer thus preventing electron-hole recombinations.  相似文献   

16.
Anatase TiO2 was prepared by a facile sol-gel method at low temperature through tailoring the pH of sol-gel without calcination. As a control, anatase TiO2 was also synthesized by the conventional sol-gel process, in which calcination at 500 °C was required to transform the amorphous oxide into highly crystalline anatase. As-prepared samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). Their photocatalytic activities were evaluated by degradation of methyl orange under UV light irradiation. On the basis of experiment results, it could be concluded that TiO2 prepared by low temperature route showed more advantages in small particle size, highly dispersion nature, abundance of surface hydroxyl groups, strong PL signal, and high photocatalytic activity over TiO2 obtained by the conventional sol-gel process. Furthermore, the reason of the former possessing higher photocatalytic activity was discussed.  相似文献   

17.
The mesoporous N, S-codoped TiO2(B) nanobelts are synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption measurements (BET), X-ray photoelectron spectra (XPS), and UV-vis diffuse reflectance spectra (DRS). The results show that the prepared samples are mesoporous structured and exhibit stronger absorption in the visible light region with red shift in the absorption edge. The photocatalytic activity of N, S-codoped mesoporous TiO2(B) nanobelts is evaluated by the photocatalytic photodegradation of potassium ethyl xanthate (KEX) under visible light irradiation. It is found that the photocatalytic activity of the prepared samples increases with increasing the molar ratio of thiourea to Ti (R). At R = 3, the photocatalytic activity of the N, S-codoped TiO2(B) sample TBLTS-3 reaches a maximum value. With further increasing R, the photocatalytic activity of the sample decreases. The high photocatalytic activity of N, S-codoped TiO2(B) nanobelts can be attributed to the balance between strong absorption in visible light region and low recombination rate of electron/hole pairs.  相似文献   

18.
近年来光催化固氮引起了广泛的关注,其代表了将N2有效转化为NH3的“绿色工业”的可持续发展路线,如何有效合理地设计这方面的光催化剂仍然是本领域地一个挑战. 本文提出了一种策略,即在高浓度掺杂的TiOsub>2中利用等离激元热电子来激活惰性Nsub>2分子. 成功合成的Mo掺杂TiOsub>2催化剂在常温常压条件下显示出高达134 μmol·g-1·h-1的NH3催化效率,这与传统的等离激元贵金属所实现的催化效率相当. 通过超快光谱技术,发现该体系中的等离激元热电子激活了N2分子,从而提高了TiO2的催化活性. 本文为基于等离激元半导体的光催化固氮反应开辟了一条新的途径.  相似文献   

19.
In this study, SnO2/TiO2 thin films are fabricated on SiO2/Si and Corning glass 1737 substrates using a R.F. magnetron sputtering process. The gas sensing properties of these films under an oxygen atmosphere with and without UV irradiation are carefully examined. The surface structure, morphology, optical transmission characteristics, and chemical compositions of the films are analyzed by atomic force microscopy, scanning electron microscopy and PL spectrometry. It is found that the oxygen sensitivity of the films deposited on Corning glass 1737 substrates is significantly lower than that of the films grown on SiO2/Si substrates. Therefore, the results suggest that SiO2/Si is an appropriate substrate material for oxygen gas sensors fabricated using thin SnO2/TiO2 films.  相似文献   

20.
The surface interaction between TiO2 and natural zeolite, clinoptilolite, has been investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), X-ray diffractometer (XRD), diffuse reflectance infrared Fourier transform (DRIFT) and far Fourier transform infrared ray (FTIR) spectroscopy. And the photocatalytic degradation (PCD) rate of methyl orange (MO), a model of recalcitrant azo dye, in aqueous system has been measured to compare the photocatalytic activities of different photocatalysts. A model has been carried out to explain the incorporation between TiO2 particles and natural zeolite. The results show that the TiO2 particles loaded on zeolite are 50 nm or so, smaller than the pure one, and combine with zeolite via chemical force. Since the reserved adsorption ability and the existence of electron trapper, the TiO2-zeolite performed more efficient at low initial concentration and in the later period of PCD process, as compared with pure TiO2 nanopowders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号