首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
By combining the advantages of RT-PCR with the sensitivity of bioluminescence using the photoprotein aequorin, a bioluminescence assay has been applied to the determination of message regulation during infectious disease. The bioluminescence produced by the aequorin conjugate covers more than seven logs concentration, of which approximately five logs produces a linear relationship between product and bioluminescence signal. Aequorin - based bioluminescent detection protocols for mRNA are sensitive into the attomolar range, which obligate fewer cycles of PCR and avoid the plateau effect traditionally associated with other noncompetitive RT-PCR techniques. Additional advantages of aequorin-based bioluminescence methods are ease of automation, compatibility with microtiter plate format, low cost, and flexibility.  相似文献   

4.
Nucleic acid sequence based amplification (NASBA) is a versatile in vitro nucleic acid amplification method. In this work, RNA amplification and labeling by NASBA and microarray analysis are combined in a one-step process. The NASBA reaction is performed in direct contact with capture probes. These probes are bound to surface-attached hydrogel spots generated at the chip surfaces by using a simple printing and UV irradiation process. Five gene expression and SNP parameters with known relevance in breast cancer diagnostics were chosen to demonstrate that multiplex NASBA-on-microarray analysis is possible. A minimum amount of 10 pg of total RNA was shown to be sufficient for the detection of the reference parameter RPS18, which demonstrates that the detection limit of the microarray-based NASBA assays theoretically allows single-cell assays to be performed.  相似文献   

5.
6.
Salmonella Enteritidis and Salmonella Typhimurium are the most widespread causes of salmonellosis and gastrointestinal diseases worldwide. Thus, their simple and sensitive detection is significantly important in biosafety and point-of-care diagnostics. In that regard, although present nucleic acid-based attempts are mainly focused on the detection methods encompassing all Salmonella enterica members in a single reaction, serotypes other than S. Enteritidis and S. Typhimurium are clinically and epidemiologically rare to humans. Therefore, regarding high ribosomal RNA (rRNA) copy numbers in a cell, isothermal nucleic acid sequence-based amplification (NASBA) technique was employed for simple, sensitive and simultaneous detection of the bacteria. However, due to high sequence homology among 16S rRNA genes and consequently, very few specific regions, we developed a novel NASBA method called “single specific primer-NASBA or SSP-NASBA” in which the specificity of the antisense primer is sufficient to perform a specific NASBA reaction. Accordingly, we designed highly specific NASBA antisense and degenerate sense primers for a segment of 16S rRNA variable region by universal sequence alignment to simultaneously detect S. Enteritidis and S. Typhimurium. Meanwhile, the approach was successfully evaluated for various Salmonella as well as closely related non-Salmonella serovars. Specific and simultaneous detection of both bacteria was achieved with the designed primer set in a single reaction environment with a detection limit of less than 10 CFUs mL−1. The developed NASBA assay should facilitate the overall process and provide a simple, fast, specific and sensitive approach for molecular diagnostics of pathogens under various circumstances, e.g. outbreaks.  相似文献   

7.
Universal liposomes: preparation and usage for the detection of mRNA   总被引:1,自引:0,他引:1  
Dye-encapsulating liposomes can serve as signaling reagents in biosensors and biochemical assays in place of enzymes or fluorophores. Detailed here is the use and preparation of streptavidin-coupled liposomes which offer a universal approach to biotinylated target detection. The universal approach provides two advantages, i.e. only one type of liposome is necessary despite varying target and probe sequences and the hybridization event can take place in the absence of potential steric hindrance occurring from liposomes directly conjugated to probes. One objective of this work was to optimize the one-step conjugation of SRB-encapsulating liposomes to streptavidin using EDC. Liposome, EDC, streptavidin concentrations, and reaction times were varied. The optimal coupling conditions were found to be an EDC:carboxylated lipid:streptavidin molar ratio of 600:120:1 and a reaction time of 15 min. The second goal was to utilize these liposomes in sandwich hybridization microtiter plate-based assays using biotinylated reported probes as biorecognition elements. The assay was optimized in terms of probe spacer length, probe concentration, liposome concentration, and streptavidin coverage. Subsequently, the optimized protocol was applied to the detection of DNA and RNA sequences. A detection limit of 1.7 pmol L−1 and an assay range spanning four orders of magnitude (5 pmol L−1−50 nmol L−1) with a coefficient of variation ≤5.8% was found for synthetic DNA. For synthetic RNA the LOQ was half that of synthetic DNA. A comparison was made to alkaline phosphatase-conjugated streptavidin for detection which yielded a limit of quantitation approximately 80 times higher than that for liposomes in the same system. Thus, liposomes and the optimized sandwich hybridization method are well suited for detecting single-stranded nucleic acid sequences and compares favorably to other sandwich hybridization schemes recently described in the literature. The assay was then used successfully for the clear detection of mRNA amplified by nucleic acid sequence-based amplification (NASBA) isolated from as little as one Cryptosporidium parvum oocyst. The detection of mRNA from oocysts isolated from various water sample types using immunomagnetic separation was also assessed. Finally, to prove the wider applicability and sensitivity of this universal method, RNA amplified from the atxA gene of Bacillus anthracis was detected when the input to the preceding NASBA reaction was as low as 1.2 pg. This highly sensitive liposome-based microtiter plate assay is therefore a platform technology allowing for high throughput and wide availability for routine clinical and environmental laboratory applications.  相似文献   

8.
A multi-analyte biosensor based on nucleic acid hybridization and liposome signal amplification was developed for the rapid serotype-specific detection of Dengue virus. After RNA amplification, detection of Dengue virus specific serotypes can be accomplished using a single analysis within 25 min. The multi-analyte biosensor is based on single-analyte assays (see Baeumner et al (2002) Anal Chem 74:1442–1448) developed earlier in which four analyses were required for specific serotype identification of Dengue virus samples. The multi-analyte biosensor employs generic and serotype-specific DNA probes, which hybridize with Dengue RNA that is amplified by the isothermal nucleic acid sequence based amplification (NASBA) reaction. The generic probe (reporter probe) is coupled to dye-entrapping liposomes and can hybridize to all four Dengue serotypes, while the serotype-specific probes (capture probes) are immobilized through biotin–streptavidin interaction on the surface of a polyethersulfone membrane strip in separate locations. A mixture of amplified Dengue virus RNA sequences and liposomes is applied to the membrane and allowed to migrate up along the test strip. After the liposome-target sequence complexes hybridize to the specific probes immobilized in the capture zones of the membrane strip, the Dengue serotype present in the sample can be determined. The amount of liposomes immobilized in the various capture zones directly correlates to the amount of viral RNA in the sample and can be quantified by a portable reflectometer. The specific arrangement of the capture zones and the use of unlabeled oligonucleotides (cold probes) enabled us to dramatically reduce the cross-reactivity of Dengue virus serotypes. Therefore, a single biosensor can be used to detect the exact Dengue serotype present in the sample. In addition, the biosensor can simultaneously detect two serotypes and so it is useful for the identification of possible concurrent infections found in clinical samples. The various biosensor components have been optimized with respect to specificity and sensitivity, and the system has been ultimately tested using blind coded samples. The biosensor demonstrated 92% reliability in Dengue serotype determination. Following isothermal amplification of the target sequences, the biosensor had a detection limit of 50 RNA molecules for serotype 2, 500 RNA molecules for serotypes 3 and 4, and 50,000 molecules for serotype 1. The multi-analyte biosensor is portable, inexpensive, and very easy to use and represents an alternative to current detection methods coupled with nucleic acid amplification reactions such as electrochemiluminescence, or those based on more expensive and time consuming methods such as ELISA or tissue culture.  相似文献   

9.
Although microRNAs (miRNAs) have been shown to be excellent indicators of disease state, current profiling platforms are insufficient for clinical translation. Here, we demonstrate a versatile hydrogel‐based microfluidic approach and novel amplification scheme for entirely on‐chip, sensitive, and highly specific miRNA detection without the risk of sequence bias. A simulation‐driven approach is used to engineer the hydrogel geometry and the gel‐reaction environment is chemically optimized for robust detection performance. The assay provides 22.6 fM sensitivity over a three log range, demonstrates multiplexing across at least four targets, and requires just 10.3 ng of total RNA input in a 2 hour and 15 minutes assay.  相似文献   

10.
Miniaturized isothermal nucleic acid amplification, a review   总被引:1,自引:0,他引:1  
Asiello PJ  Baeumner AJ 《Lab on a chip》2011,11(8):1420-1430
Micro-Total Analysis Systems (μTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.  相似文献   

11.
Vaccination against Helicobacter pylori using DNA sequences encoding Urease A and B subunits was compared to immunization with urease antigen and MTP-PE in a liposome formulation. To determine the effectiveness of a vaccine against H. pylori in a mouse model it is essential to quantify the number of H. pylori remaining in the stomachs following challenge with an inoculum of live bacteria. Culture assays and enzymatic assays produce inconsistent results often unsuitable to conclude if vaccine candidates are protective. To overcome this problem, we developed two assays: 1) a competitive quantitative PCR using a colorimetric readout and 2) a non-competitive direct quantitative PCR using a highly sensitive bioluminescent readout. The competitive PCR requires coamplification of a segment of the urease C sequence and an internal control standard in a competitive manner using a single set of primers. PCR products were quantified colorimetrically by an enzyme-linked immunosorbent assay and compared with known quantities of the internal control standard added to the PCR reaction. The highly sensitive, bioluminescent assay measures the amplified DNA directly using a flash-type luminescent tag and a specific probe. The Sydney strain of H. pylori was used for the mouse infection model. Quantification of H. pylori by either the bioluminescent assay or the competitive PCR was reliable, specific and sensitive compared to quantitative growth assays which often gave false results. The bioluminescent assay was much more sensitive and less labor/time intensive than the competitive PCR. The bioluminescent assay was able to quantitate as few as 100 bacteria, while the competitive assay could not detect less than 10(3) bacteria per mouse stomach. Quantification of H. pylori by bioluminescent assay was superior to the competitive assay and may be used for research applications, such as the development of vaccines, pathogenesis of gastric disease and monitoring of antibiotic treatment.  相似文献   

12.
Bioluminescent labels can be especially useful for in vivo and live animal studies due to the negligible bioluminescence background in cells and most animals, and the non-toxicity of bioluminescent reporter systems. Significant thermal stability of bioluminescent labels is essential, however, due to the longitudinal nature and physiological temperature conditions of many bioluminescent-based studies. To improve the thermostability of the bioluminescent protein aequorin, we employed random and rational mutagenesis strategies to create two thermostable double mutants, S32T/E156V and M36I/E146K, and a particularly thermostable quadruple mutant, S32T/E156V/Q168R/L170I. The double aequorin mutants, S32T/E156V and M36I/E146K, retained 4 and 2.75 times more of their initial bioluminescence activity than wild-type aequorin during thermostability studies at 37 °C. Moreover, the quadruple aequorin mutant, S32T/E156V/Q168R/L170I, exhibited more thermostability at a variety of temperatures than either double mutant alone, producing the most thermostable aequorin mutant identified thus far.  相似文献   

13.
Parallel nanoliter detection of cancer markers using polymer microchips   总被引:5,自引:0,他引:5  
A general multipurpose microchip technology platform for point-of-care diagnostics has been developed. Real-time nucleic acid sequence-based amplification (NASBA) for detection of artificial human papilloma virus (HPV) 16 sequences and SiHa cell line samples was successfully performed in cyclic olefin copolymer (COC) microchips, incorporating supply channels and parallel reaction channels. Samples were distributed into 10 parallel reaction channels, and signals were simultaneously detected in 80 nl volumes. With a custom-made optical detection unit, the system reached a sensitivity limit of 10(-6) microM for artificial HPV 16 sequences, and 20 cells microl(-1) for the SiHa cell line. This is comparable to the detection limit of conventional readers, and clinical testing of biological samples in polymer microchips using NASBA is therefore possible.  相似文献   

14.
Sui B  Li L  Li L  Jin W 《The Analyst》2011,136(19):3950-3955
An ultra-sensitive assay for quantification of DNA based on single-molecule detection coupled with hybridization accumulation was developed. In this assay, target DNA (tDNA) in solution was accumulated on a silanized substrate blocked with ethanolamine and bovine serum albumin (BSA) through a hybridization reaction between tDNA and capture DNA immobilized on the substrate. The tDNA on the substrate was labeled with quantum dots which had been modified with detection DNA and blocked with BSA. The fluorescence image of single QD-labeled tDNA molecules on the substrate was acquired using total internal reflection fluorescence microscopy. The tDNA was quantified by counting the bright dots on the image from the QDs. The limit of detection of the DNA assay was as low as 6.4 × 10(-18) mol L(-1). Due to the ultra-high sensitivity, the DNA assay was applied to measure the beta-2-microglobulin messenger RNA level in single human breast cancer cells without a need for PCR amplification.  相似文献   

15.
In nature, the green light emission observed in the jellyfish Aequorea victoria is a result of a non-radiative energy transfer from the excited-state aequorin to the green fluorescent protein. In this work, we have modified the photoprotein aequorin by attaching selected fluorophores at a unique site on the protein. This will allow for in vitro transfer of bioluminescent energy from aequorin to the fluorophore thus creating an artificial jellyfish. The fluorophores are selected such that the excitation spectrum of the fluorophore overlaps with the emission spectrum of aequorin. By modifying aequorin with different fluorophores, bioluminescent labels with different emission maxima are produced, which will allow for the simultaneous detection of multiple analytes. By examining the X-ray crystal structure of the protein, four different sites for introduction of the unique cysteine residue were evaluated. Two fluorophores with differing emission maxima were attached individually to the mutants through the sulfhydryl group of the cysteine molecule. Two of the fluorophore-labeled mutants showed a peak corresponding to fluorophore emission thus indicating resonance energy transfer from aequorin to the fluorophore.  相似文献   

16.
A simple membrane strip-based biosensor for the detection of viable B. anthracis spores was developed and combined with a spore germination procedure as well as a nucleic acid amplification reaction to identify as little as one viable B. anthracis spore in less than 12 h. The biosensor is based on identification of a unique mRNA sequence from the anthrax toxin activator (atxA) gene encoded on the toxin plasmid, pXO1. Preliminary work relied on plasmid vectors in both E. coli and B. thuringiensis expressing the atxA gene. Once the principle was firmly established, the vaccine strain of B. anthracis was used. After inducing germination and outgrowth of spores of B. anthracis (Sterne strain), RNA was extracted from lysed cells, amplified using nucleic acid sequence-based amplification (NASBA), and rapidly identified by the biosensor. While the biosensor assay requires only 15-min assay time, the overall process takes 12 h for the detection of as little as one viable B. anthracis spore, and is shortened significantly, if larger amounts of spores are present. The biosensor is based on an oligonucleotide sandwich-hybridization assay format. It uses a membrane flow-through system with an immobilized oligonucleotide probe that hybridizes with the target sequence. Signal amplification is provided when the target sequence hybridizes to a second oligonucleotide probe that has been coupled to dye-encapsulating liposomes. The dye in the liposomes then provides a signal that can be read visually or quantified with a hand-held reflectometer. The biosensor can detect as little as 1.5 fmol of target mRNA. Specificity analysis revealed no crossreactivity with closely related species such as B. cereus, B. megaterium, B. subtilis, B. thuringiensis etc.  相似文献   

17.
Testing for bioluminescent pyrophosphate is a convenient method of DNA detection without complex equipments, but it is insufficiently sensitive and offers no particular time advantage over other rapid detection methods. The shortcomings of the traditional bioluminescent pyrophosphate method have been addressed by using 2-deoxyadenosine-5-(α-thio)-triphosphate (dATPαS) instead of dATP for LAMP, thus reducing the high background signal and generating a constant background value. In this study, LAMP coupled to a novel bioluminescent pyrophosphate assay was developed to detect E. coli O157:H7. The new method has a limit of detection of <10 copies/μL or 5 CFU/mL; its sensitivity is higher than that of the conventional LAMP assay. Moreover, a food-borne pathogen can be detected when a single DNA template is included in the LAMP assay, making it 100 times more sensitive than the traditional LAMP method. Three hundred food samples were tested with this assay and the accuracy of detection was verified with a culture method and MALDI Biotyper. The assay only took 90–120 min and detected <10 copies of the pathogen. This method had the advantages of rapidity, sensitivity, and simplicity, so it is very competitive for the rapid and highly sensitive detection of food-borne pathogens.  相似文献   

18.
Isothermal exponential amplification techniques, such as strand‐displacement amplification (SDA), rolling circle amplification (RCA), loop‐mediated isothermal amplification (LAMP), nucleic acid sequence based amplification (NASBA), helicase‐dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on‐site, point‐of‐care, and in situ assay applications. These amplification techniques eliminate the need for temperature cycling, as required for the polymerase chain reaction (PCR), while achieving comparable amplification yields. We highlight here recent advances in the exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. The incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables the highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from nonspecific template interactions, must be addressed to further improve isothermal and exponential amplification techniques.  相似文献   

19.
A rapid label-free visual assay for the detection of viral RNA using peptide nucleic acid (PNA) probes and gold nanoparticles (AuNPs) is presented in this study. Diagnosis is a crucial step for the molecular surveillance of diseases, and a rapid visual test with high specificity could play a vital role in the management of viral diseases. In this assay, the specific agglomerative behavior of PNA with gold nanoparticles was manipulated by its complementation with viral RNA. The assay was able to detect 5–10 ng of viral RNA from various biological samples, such as allantoic fluids, cell culture fluids and vaccines, in 100 μl of test solution. The developed assay was more sensitive than a hemagglutination (HA) test, a routine platform test for the detection of Newcastle disease virus (NDV), and the developed assay was able to visually detect NDV with as little as 0.25 HA units of virus. In terms of the specificity, the test could discriminate single nucleotide differences in the target RNA and hence could provide visual viral genotyping/pathotyping. This observation was confirmed by pathotyping different known isolates of NDV. Further, the PNA-induced colorimetric changes in the presence of the target RNA at different RNA to PNA ratios yielded a standard curve with a linear coefficient of R2 = 0.990, which was comparable to the value of R2 = 0.995 from real-time PCR experiments with the same viral RNA. Therefore, the viral RNA in a given samples could be quantified using a simple visual spectrophotometer available in any clinical laboratory. This assay may find application in diagnostic assays for other RNA viruses, which are well known to undergo mutations, thus presenting challenges for their molecular surveillance, genotyping and quantification.  相似文献   

20.
《Analytical letters》2012,45(18):2025-2034
Abstract

A highly sensitive bioluminescent assay of dehydrogenases was performed. NADH was produced by the catalytic action of alcohol and glucose-6-phosphate dehydrogenases and subsequently measured with high sensitivity by a bioluminescent assay using NAD (P) H : FMN oxidoreductase and luciferase from Photobacterium fischeri. The minimal amount of dehydrogenases that could be measured was 0.0055 amol (5.5 × 10?-21 mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号