首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aequorea victoria is a type of jellyfish that is known by its famous protein, green fluorescent protein (GFP), which has been widely used as a probe in many fields. Aequorea has another important protein, aequorin, which is one of the members of the EF‐hand calcium‐binding protein family. Aequorin has been used for intracellular calcium measurements for three decades, but its bioluminescence mechanism remains largely unknown. One of the important reasons is the lack of clear and reliable knowledge about the light emitters, which are complex. Several neutral and anionic forms exist in chemiexcited, bioluminescent, and fluorescent states and are connected with the H‐bond network of the binding cavity in the protein. We first theoretically investigated aequorin chemiluminescence, bioluminescence, and fluorescence in real proteins by performing hybrid quantum mechanics and molecular mechanics methods combined with a molecular dynamics method. For the first time, this study reported the origin and clear differences in the chemiluminescence, bioluminescence and fluorescence of aequorin, which is important for understanding the bioluminescence not only of jellyfish, but also of many other marine organisms (that have the same coelenterazine caved in different coelenterazine‐type luciferases).  相似文献   

2.
Bioluminescent labels can be especially useful for in vivo and live animal studies due to the negligible bioluminescence background in cells and most animals, and the non-toxicity of bioluminescent reporter systems. Significant thermal stability of bioluminescent labels is essential, however, due to the longitudinal nature and physiological temperature conditions of many bioluminescent-based studies. To improve the thermostability of the bioluminescent protein aequorin, we employed random and rational mutagenesis strategies to create two thermostable double mutants, S32T/E156V and M36I/E146K, and a particularly thermostable quadruple mutant, S32T/E156V/Q168R/L170I. The double aequorin mutants, S32T/E156V and M36I/E146K, retained 4 and 2.75 times more of their initial bioluminescence activity than wild-type aequorin during thermostability studies at 37 °C. Moreover, the quadruple aequorin mutant, S32T/E156V/Q168R/L170I, exhibited more thermostability at a variety of temperatures than either double mutant alone, producing the most thermostable aequorin mutant identified thus far.  相似文献   

3.
Complex bioluminescence spectra of photoproteins from marine coelenterates - jellyfish Aequorea victoria and hydroid Obelia longissima, and photoluminescence spectra of the bioluminescent reaction products (Ca(2+)-discharged photoproteins) were deconvolved into components. The bioluminescence spectra of aequorin were found to include three, the bioluminescence spectra of obelin - four, and the photoluminescence spectra of the Ca(2+)-discharged photoproteins - only two components. The spectral components were assigned to one unionized and three ionized forms of coelenteramide. The changes in acidity of the excited coelenteramide molecule are discussed. The differences in bioluminescence and photoluminescence spectra are considered, with protonic environment of coelenteramide taken into account.  相似文献   

4.
[see reaction]. Avidin conjugates containing the covalently attached dyes QSY-7 and dabcyl were prepared and shown to quench the bioluminescence of biotinylated aequorin. Quenching efficiency was shown to be dependent on both the label-to-avidin ratio and the concentration of the avidin conjugate. These properties were exploited to develop a homogeneous bioluminescence resonance energy transfer (BRET) assay for biotin.  相似文献   

5.
6.
Site‐directed mutagenesis is a powerful tool to investigate the structure–function relationship of proteins and a function of certain amino acid residues in catalytic conversion of substrates during enzymatic reactions. Hence, it is not surprising that this approach was repeatedly applied to elucidate the role of certain amino acid residues in various aspects of photoprotein bioluminescence, mostly for aequorin and obelin, and to design mutant photoproteins with altered properties (modified calcium affinity, faster or slower bioluminescence kinetics, different emission color) which would either allow the development of novel bioluminescent assays or improvement of characteristics of the already existing ones. This information, however, is scattered over different articles. In this review, we systematize the findings that were made using site‐directed mutagenesis studies regarding the impact of various amino acid residues on bioluminescence of hydromedusan Ca2+‐regulated photoproteins. All key residues that have been identified are pinpointed, and their influence on different aspects of photoprotein functioning such as active photoprotein complex formation, bioluminescence reaction, calcium response and light emitter formation is discussed.  相似文献   

7.
This study describes the synthesis of three new tetra- and octa-thio-pyridinium phthalocyanine derivatives. PSs 3a and 4a were prepared from the tetramerization of phthalonitriles 1 and 2, respectively, whereas PS 5 was prepared from the nucleophilic substitution of the 8 beta fluor atoms of hexadecafluorophthalocyaninatozinc(II) by mercaptopyridine, followed by cationization. The recombinant bioluminescent Escherichia coli strain was used to assess, in real time, the photoinactivation efficiency of these cationic phthalocyanines, under white and red light. The cellular localization and uptake were also determined to assess the potential of the new phthalocyanines as antibacterial agents. Derivative 3a was the most effective PS, causing a 5 logs reduction in bioluminescence after 30 min of irradiation under white or red lights. The photoinactivation efficiency of the phthalocyanine 4a was similar (5 logs reduction in bioluminescence) to that of 3a when irradiated with white light, but the efficiency of inactivation was reduced (2.1 logs reduction in bioluminescence) under red light. The tetra-substituted phthalocyanine 3a also generates high amounts of singlet oxygen, does not aggregate in PBS and is highly fluorescent, which makes it an effective PS and a promising fluorescent labeling.  相似文献   

8.
Upon binding their metal ion cofactors, Ca2+‐regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+‐regulated photoproteins—aequorin from Aequorea victoria, clytin from Clytia gregaria, mitrocomin from Mitrocoma cellularia and obelins from Obelia longissima and Obelia geniculata—demonstrate the same bioluminescent kinetics pattern. Based on these findings, for the first time we propose a unanimous kinetic model describing the bioluminescence mechanism of Ca2+‐regulated photoproteins.  相似文献   

9.
绿色荧光蛋白   总被引:4,自引:0,他引:4  
绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光.由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领域.本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用.  相似文献   

10.
Calcium ion is a ubiquitous intracellular messenger, performing this function in many eukaryotic cells. To understand calcium regulation mechanisms and how disturbances of these mechanisms are associated with disease states, it is necessary to measure calcium inside cells. Ca2+-regulated photoproteins have been successfully used for this purpose for many years. Here we report the results of comparative studies on the properties of recombinant aequorin from Aequorea victoria, recombinant obelins from Obelia geniculata and Obelia longissima, recombinant mitrocomin from Mitrocoma cellularia, and recombinant clytin from Clytia gregaria as intracellular calcium indicators in a set of identical in vitro and in vivo experiments. Although photoproteins reveal a high degree of identity of amino acid sequences and spatial structures, and, apparently, have a common mechanism for the bioluminescence reaction, they were found to differ in the Ca2+ concentration detection limit, the sensitivity of bioluminescence to Mg2+, and the rates of the rise of the luminescence signal with a sudden change of Ca2+ concentration. In addition, the bioluminescence activities of Chinese hamster ovary cells expressing wild-type photoproteins also differed. The light signals of cells expressing mitrocomin, for example, slightly exceeded the background, suggesting that mitrocomin may be hardly used to detect intracellular Ca2+ without modifications improving its properties. On the basis of experiments on the activation of endogenous P2Y2 receptor in Chinese hamster ovary cells by ATP, we suggest that wild-type aequorin and obelin from O. longissima are more suitable for calcium detection in cytoplasm, whereas clytin and obelin from O. geniculata can be used for calcium measurement in cell compartments with high Ca2+ concentration. Figure
Hydromedusan photoproteins differ in Ca2+ concentration detection limit, sensitivity of bioluminescence to Mg2+, and rates of rise of luminescence signal with a sudden change of [Ca2+] despite a high degree of identity of their amino acid sequences and spatial structures, and, apparently, a common mechanism for the bioluminescence reaction.  相似文献   

11.
The need for external excitation sources limits the utility of quantum dots (QDs) in multiplexed detection schemes and in in vivo imaging, because it can lead to strong background by surface illumination and tissue autofluorescence. In this work, the authors describe the use of oxidized dextran as a support to conjugate the photoprotein aequorin to QDs in order to obtain self-illuminating QDs and an efficient QD-based bioluminescence (BL) resonance energy system. On addition of Ca2+, BL is generated by immobilized aequorin and transferred to the QDs which thereby become photoexcited. Hence, these QDs will fluoresce without being excited by an external light source and therefore have the typical merits (such as very low background) of bioluminescent systems. The half-life of the BL of aequorin peaking at 460 nm is 1.6 s, and that of the QD-conjugated aequorin (peaking at 528 nm) is 6.4 s. We perceive that by labeling antibodies with these nanocomposites, highly advanced multiplex immunoassays will become possible.
Graphical abstract The photoprotein aequorin was conjugated to CdTe quantum dots coated wit denatured and reduced bovine serum albumin (dBSA)  by using oxidized dextran as a cross linker, which leads to the formation of self-illuminating QDs.
  相似文献   

12.
The photoprotein aequorin is a calcium-dependent bioluminescent enzyme which is most widely used in biotechnology processes, but this protein is susceptible to aggregation and proteolysis degradation. Various additives such as polyols are known to enhance the stability of proteins and protect them in native folded and functional state. In this work, for study of aequorin stability, the histidine-tagged apoaequorin was expressed in Escherichia coli and purified by nickel chelate affinity chromatography. Kinetics of light emission of purified aequorin upon addition of Ca2+ showed a linear dependency on aequorin concentration. Furthermore, the effect of some stabilisers, such as glycerol, glucose, lactose, terehalose, sucrose and sorbitol on thermostability of recombinant aequorin was measured. Results indicate that the recombinant aequorin is very stable in phosphate buffer including 30 mM sorbitol, since after heat shock of 30 min at different temperatures, a slight decrease in activity was observed. However, flexibility and exposure of tryptophan residues of aequorin to the solvent, in the presence and absence of stabilisers, with respect to fluorescence quenching by acrylamide, indicated identical characterisation. In addition, according to limited proteolysis of aequorin demonstrating that this enzyme is sensitive to proteases as in the presence of 2 ng/ml of protease, aequorin was completely digested. In conclusion, sorbitol increases stability of aequorin with high photoactivity and not effect for flexibility and limited proteolysis of this photoprotein.  相似文献   

13.
The main analytical use of Ca2+-regulated photoproteins from luminous coelenterates is for real-time non-invasive visualization of intracellular calcium concentration ([Ca2+]i) dynamics in cells and whole organisms. A limitation of this approach for in vivo deep tissue imaging is the fact that blue light emitted by the photoprotein is highly absorbed by tissue. Seven novel coelenterazine analogues were synthesized and their effects on the bioluminescent properties of recombinant obelin from Obelia longissima and aequorin from Aequorea victoria were evaluated. Only analogues having electron-donating groups (m-OCH3 and m-OH) on the C6 phenol moiety or an extended resonance system at the C8 position (1-naphthyl and α-styryl analogues) showed a significant red shift of light emission. Of these, only the α-styryl analogue displayed a sufficiently high light intensity to allow eventual tissue penetration. The possible suitability of this compound for in vivo assays was corroborated by studies with aequorin which allowed the monitoring of [Ca2+]i dynamics in cultured CHO cells and in hippocampal brain slices. Thus, the α-styryl coelenterazine analogue might be potentially useful for non-invasive, in vivo bioluminescence imaging in deep tissues of small animals.  相似文献   

14.
In nature, the green light emission observed in the jellyfish Aequorea victoria is a result of a non-radiative energy transfer from the excited-state aequorin to the green fluorescent protein. In this work, we have modified the photoprotein aequorin by attaching selected fluorophores at a unique site on the protein. This will allow for in vitro transfer of bioluminescent energy from aequorin to the fluorophore thus creating an artificial jellyfish. The fluorophores are selected such that the excitation spectrum of the fluorophore overlaps with the emission spectrum of aequorin. By modifying aequorin with different fluorophores, bioluminescent labels with different emission maxima are produced, which will allow for the simultaneous detection of multiple analytes. By examining the X-ray crystal structure of the protein, four different sites for introduction of the unique cysteine residue were evaluated. Two fluorophores with differing emission maxima were attached individually to the mutants through the sulfhydryl group of the cysteine molecule. Two of the fluorophore-labeled mutants showed a peak corresponding to fluorophore emission thus indicating resonance energy transfer from aequorin to the fluorophore.  相似文献   

15.
Calcium‐activated photoproteins, such as aequorin, have been used as luminescent Ca2+ indicators since 1967. After the cloning of aequorin in 1985, microinjection was substituted by its heterologous expression, which opened the way for a widespread use. Molecular fusion of green fluorescent protein (GFP) to aequorin recapitulated the nonradiative energy transfer process that occurs in the jellyfish Aequorea victoria, from which these two proteins were obtained, resulting in an increase of light emission and a shift to longer wavelength. The abundance and location of the chimera are seen by fluorescence, whereas its luminescence reports Ca2+ levels. GFP‐aequorin is broadly used in an increasing number of studies, from organelles and cells to intact organisms. By fusing other fluorescent proteins to aequorin, the available luminescence color palette has been expanded for multiplexing assays and for in vivo measurements. In this report, we will attempt to review the various photoproteins available, their reported fusions with fluorescent proteins and their biological applications to image Ca2+ dynamics in organelles, cells, tissue explants and in live organisms.  相似文献   

16.
Certain marine organisms produce calcium-activated photoproteins that allow them to emit light for a variety of purposes, such as defense, feeding, breeding, etc. Even though there are many bioluminescent organisms in nature, only a few photoproteins have been isolated and characterized. The mechanism of emission of light in the blue region is the result of an internal chemical reaction. Because there is no need for excitation through external irradiation for the emission of bioluminescence, the signal produced has virtually no background. This allows for the detection of the proteins at extremely low levels, making these photoproteins attractive labels for analytical applications. In that regard, the use of certain photoproteins, namely, aequorin, obelin, and the green fluorescent protein as labels in the design and development of binding assays for biomolecules has been reviewed. In addition, a related fluorescent photoprotein, the green fluorescent protein (GFP), has been recently employed in bioanalysis. The use of GFP in binding assays is also discussed in this review.  相似文献   

17.
Aequorin is a bioluminescent protein, isolated from the hydromedusan Aequorea victoria. A recombinant cDNA plasmid (pAEQ1) was shown to encode apoaequorin by detecting photoprotein activity in an extract of an E. coli strain containing pAEQ1 (Prasher et al., 1986, Biochem. Biophys. Res. Comm. 126, 1259-1268). The nucleotide sequence of the pAEQ1 insert has been determined and is shown to differ significantly from the aequorin cDNA (AQ440) isolated by Inouye et al. (1985, Proc. Natl. Acad. Sci. USA 82, 3154-3158). Comparisons of the coding regions of the two cDNAs show there are 52 nucleotide differences, 19 of which are responsible for 18 amino acid replacements. These differences explain the microheterogeneity observed at 17 positions during the sequencing of native apoaequorin. Five aequorin isotypes extracted from Aequorea tissue are observed on 2-dimensional gels and the E. coli-expressed apoaequorin is shown to co-migrate with one of these isotypes. The multiple isotypes could be caused by the presence of a multi-gene family since Southern blot analysis of Aequorea DNA suggests the presence of a minimum of four aequorin genes. Immunoblot analysis suggests that purified native aequorin is proteolytically cleaved during its purification from Aequorea. Comparison of the deduced cDNA translations and the protein sequence suggests the loss of seven residues from the amino terminal. Overexpression of the apoaequorin cDNA in E. coli now provides the means of obtaining gram quantities of a single isotype of the protein which can be converted to aequorin in the presence of coelenterate luciferin, oxygen and an appropriate thiol. Proper extraction procedures and a single chromatographic step provides apoaequorin which is greater than 95% homogeneous.  相似文献   

18.
Certain marine organisms produce calcium-activated photoproteins that allow them to emit light for a variety of purposes, such as defense, feeding, breeding, etc. Even though there are many bioluminescent organisms in nature, only a few photoproteins have been isolated and characterized. The mechanism of emission of light in the blue region is the result of an internal chemical reaction. Because there is no need for excitation through external irradiation for the emission of bioluminescence, the signal produced has virtually no background. This allows for the detection of the proteins at extremely low levels, making these photoproteins attractive labels for analytical applications. In that regard, the use of certain photoproteins, namely, aequorin, obelin, and the green fluorescent protein as labels in the design and development of binding assays for biomolecules has been reviewed. In addition, a related fluorescent photoprotein, the green fluorescent protein (GFP), has been recently employed in bioanalysis. The use of GFP in binding assays is also discussed in this review. Received: 7 November 1999 / Revised: 25 January 2000 / Accepted: 26 January 2000  相似文献   

19.
In this paper, we studied the surface properties of recombinant aequorin at the air-water interface. Using the Langmuir monolayer technique, the surface properties of aequorin were studied, including the surface pressure and surface potential-area isotherms, compression-decompression cycles, and stability on Trizma Base (Tris/HCl) buffer at pH 7.6. The results showed that aequorin formed a stable Langmuir monolayer and the surface pressure-area isotherms were dependent on both pH and ionic strength. At a pH higher or lower than 7.6, the limiting molecular area decreased. The circular dichroism (CD) spectra of aequorin in aqueous solutions explained this result: when the pH was higher than 7.6, the alpha-helix conformation changed to unordered structures, whereas at a pH lower than 7.6, the alpha-helix conformation changed to beta-sheet. The addition of calcium chloride to the Tris/HCl buffer subphase (pH 7.6) caused an increase of the limiting molecular area of the aequorin Langmuir monolayer. The fluorescence spectra of a Langmuir-Blodgett (LB) film of aequorin in the presence of calcium chloride indicated that the aequorin transformed to the apoaequorin.  相似文献   

20.
Abstract— The shapes, the peak wavelengths and the close matching of bioluminescence colors to visual spectral sensitivities in North American firefly species are consistent with the predictions of a spectral optimization model for selection in evolution (Seliger et al., 1982). A screening pigment found by microspectrophotometry in the rhabomeres of Photinus pyralis has the absorbancc characteristics predicted by the model. The biologically effective adaptation, a dimensionless ratio proportional to the relative advantage of a species to detect bioluminescence during twilight. has been calculated from experimentally determined distributions of ambient spectral radiances, visual spectral sensitivities and bioluminescence emissions and is shown to correlate both with color of bioluminescence and with the timing of initiation of flashing activity. The colors of firefly bioluminescence are therefore species-specific adaptations to optimize the detection of bioluminescence in the different photic environments in which the species have evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号