首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stationary phase selectivities for halogenated compounds in reversed-phase HPLC were compared using C18 monolithic silica capillary columns modified with poly(octadecyl methacrylate) (ODM) and octadecyl moieties (ODS). The preferential retention of halogenated benzenes on ODM was observed in methanol/water and acetonitrile/water mobile phases. In selectivity comparison of selected analytes on ODM and ODS, greater selectivities for halogenated compounds were obtained with respect to alkylbenzenes on an ODM column, while similar selectivities were observed with a homologous series of alkylbenzenes on ODM and ODS columns. These data can be explained by greater dispersive interactions by more densely packed octadecyl groups on the ODM polymer coated column together with the contribution of carbonyl groups in ODM side chains. For the positional isomeric separation of dihalogenated benzenes (ortho-, meta-, para-), the ODM column also provided better separation of these isomers for the adjacently eluted isomers that cannot be completely separated on an ODS column in the same mobile phase. These results imply that the ODM column can be used as a better alternative to the ODS column for the separation of other halogenated compounds.  相似文献   

2.
A novel stationary phase triacontyl-functionalized monolithic silica capillary column was successfully prepared for reversed-phase capillary liquid chromatography. The performance of the monolithic silica capillary column coated with triacontyl chain for the separation of alkylbenzenes, xylene isomers, polycyclic aromatic hydrocarbons, and mixture of α- and β-carotenes was studied, which was compared to that using the monolithic silica capillary column coated with octadecyl chain. The comparison results showed that triacontyl-functionalized monolithic silica capillary column would be a promising media to be used for the separation of isomeric solutes with long chain in reversed-phase capillary liquid chromatography.  相似文献   

3.
A polydimethylsiloxane (PDMS)-modified monolithic silica column was prepared for performing reversed-phase capillary liquid chromatography. The prepared PDMS column has a permeability of 6.4×10(-14) m(2) with a plate height <9.2 μm. Alkylbenzenes and polycyclic aromatic hydrocarbons (PAHs) were well separated with the PDMS stationary phase, which exhibited similar selectivity and separation mechanism to that of octadecyl stationary phase. The hydrophobic interactions between the analytes and the PDMS stationary phase mainly play the roles for the separation of alkylbenzenes and PAHs. The characteristics of the PDMS column for the separation of alkylbenzenes and PAHs demonstrated that it would be a promising alternative to the octadecyl column.  相似文献   

4.
HILIC mode columns were prepared by an on-column polymerization of acrylamide on a monolithic silica capillary column modified with N-(3-trimethoxysilylpropyl)methacrylamide as the anchor group. The products showed HILIC mode retention characteristics with three times greater permeability and slightly higher column efficiency compared to a commercially available amide-type HILIC column packed with 5-μm particles. The selectivity of the monolithic silica-based column was similar to that of the particulate column for each group of solutes towards nucleosides, nucleic bases and carbohydrate derivatives, although a considerable difference was observed in the selectivity for the solute groups. Although the retention of solutes based on the polar functionality was much smaller with the monolithic silica columns, which had a smaller phase ratio, than with the particle-packed column, the former can achieve better separation utilizing the high permeability and higher column efficiencies of a longer column.  相似文献   

5.
The temperature dependence (50—180 °C) of the retention factor for 35 hydrocarbons and their oxygen-containing derivatives was studied using a capillary column coated with a new film-forming polymeric adsorbent polytrimethylsilylpropyne (PTMSP). The heats of adsorption for 24 organic polar and non-polar compounds on PTMSP were determined. They turned out to be lower than the heats of adsorption of the same compounds on Porapak Q widely used in gas chromatography. The new adsorbent PTMSP is characterized by high selectivity suitable for practical application.  相似文献   

6.
In this paper, a poly(styrene-octadecene-divinylbenzene) (PS-OD-DVB) monolithic column was prepared in one step by introducing a C18 carbon chain as monomer. N,N-Dimethylformamide and decanol served as porogens to make a homogeneous polymerization mixture in a fused silica capillary (320 microm inner diameter). Its physical and chromatographic properties were compared with those of poly(styrene-divinylbenzene) (PS-DVB) monolithic column, which was also fabricated by in-situ polymerization in a fused silica capillary with the same inner diameter. Six standard proteins were used to evaluate the columns and their potential application for the separation of human hemoglobin was also discussed. It was shown that the PS-OD-DVB and PS-DVB monoliths appeared to have similar efficiency for rapid separation of six proteins within 3.5 min. The PS-OD-DVB monolith was found to have higher loading capacity and higher resolution for the separation of alpha and beta chains of hemoglobin because of the introduction of C18 carbon chains, and shows great potential for the separation of bio-macromolecules.  相似文献   

7.
High efficiency and highly retentive monolithic silica capillary columns were obtained by polymerization of octadecyl methacrylate using alpha,alpha'-azobis-isobutyronitrile (AIBN) as a free radical initiator. Hybrid type monolithic silica columns (25 cm total length x 200 microm I.D.) prepared from a mixture of tetramethoxysilane and methyltrimethoxysilane were used as a support. The effects of the monomer and the radical initiator concentrations in the reaction mixture were examined. The performance of the columns was tested in terms of column efficiency and retention behavior by using alkylbenzenes and a few other compounds as solutes and compared with that of hybrid monolithic silica columns modified with octadecylsilyl-(N,N-diethylamino)silane (ODS-DEA). Highly retentive monolithic silica columns were obtained by polymerization at high monomer concentrations. Although a decrease in column efficiency was observed with the increase in the monomer concentration in a feed mixture, an improvement in efficiency was achieved (a plate height value lower than 10 microm) by increasing an initiator concentration without significant variations in column retention properties. Results obtained by polymerization using other monomers are also presented to demonstrate the applicability of the preparation method.  相似文献   

8.
9.
Qin F  Xie C  Feng S  Ou J  Kong L  Ye M  Zou H 《Electrophoresis》2006,27(5-6):1050-1059
Monolithic silica capillary columns were prepared by a sol-gel process in fused-silica capillaries with an inner diameter of 50 microm and were modified by coating of cellulose tris(3,5-dimethylphenylcarbamate). Influences of the factors in the modification process on enantiomer separations were investigated. The prepared columns were used to perform enantiomer separations by CEC. Fifteen and two pairs of enantiomers were separated under aqueous and nonaqueous mobile phases, respectively, and most of them were baseline-separated with very high column efficiencies. The Van Deemter curve was found flat under high linear velocity of the mobile phase, which indicated favorable kinetic properties of the prepared columns. Baseline separation of a pair of enantiomers was achieved in 90 s with high-column efficiency by short-end separation under high voltage.  相似文献   

10.
The separation of telechelic poly(methyl methacrylate) (PMMA) prepolymers based on the number of end-groups under critical liquid chromatography (LC) conditions has been studied using a bare-silica column, which can interact with polar functional groups. The critical solvent compositions for non-functional, mono-functional and bi-functional PMMAs were determined in normal-phase LC using mixtures of acetonitrile and dichloromethane (DCM) of varying composition as the mobile phase. The telechelic prepolymers were successfully separated according to hydroxyl (OH) functionality (with zero, one, or two OH groups, respectively) under the critical conditions, in which fast (5 min), base-line separations were obtained independent of molecular weight. Changing the column temperature, flow rate, and mobile-phase composition within a certain range did not affect the functionality separation. Therefore this isocratic LC separation method is quite robust. Evaporative light-scattering detector (ELSD) calibration curves were used for the quantitative analysis of functional PMMA prepolymers.  相似文献   

11.
A separation system for gold nanoparticles was developed using monolithic silica capillary columns with 50 μm i.d., which were prepared via in-situ sol-gel processes. Gold nanoparticles with five different average sizes were synthesized via reduction of tetrachloroauric acid (HAuCl(4)) under different synthesis conditions, and were evaluated by UV-visible spectrophotometry, dynamic light scattering as well as transmission electron microscopy before they were separated using the developed system. The results showed that all of the gold nanoparticles had a certain size distribution, and the mean sizes obtained were 13, 17, 33, 43 and 61 nm, with σ = 2.5, 2.7, 5.2, 5.1 and 5.6 nm, respectively. Transmission electron microscopy showed that the samples with mean sizes of 13 and 17 nm were almost spherical, while larger samples were slightly non-uniform. The agglomeration of gold nanoparticles as the sample could be prevented by using a sodium dodecyl sulfate aqueous solution as the mobile phase, and gold nanoparticles were retained by adsorption on the silica surface. Separation with 8 mM sodium dodecyl sulfate as the eluent and a 1000-mm column was successful, and the separation of gold nanoparticles with 61 and 17 nm or 61 and 13 nm was demonstrated. The separation results obtained using a nonporous silica packed column as well as monolithic silica columns with or without mesopore growth were compared. It was found that separation using the mesopore-less monolithic column achieved better resolution. Through the use of a 2000-mm separation column, the mixtures of 61, 43, 17 nm and 61, 33, 13 nm could be separated.  相似文献   

12.
13.
A method employing a wide pore polymeric reversed phase column has been developed for the separation of most of the chlorophylls and related compounds previously described as occurring in marine microalgae. The high selectivity toward molecular shape of this kind of stationary phase has enabled compounds of very similar structure, such as chlorophylls c1, c2 and Mg-divinylpheoporphyrin a5 monomethyl ester, and chlorophyll a and the phytol-substituted chlorophyll c-like pigments, which commonly coelute on monomeric bonded phases, to be resolved in a single run. Some of these pigments, formerly thought to be a single compound, have, in fact, been demonstrated to be groups of two or more. The method has been successfully applied to both algal cultures and natural sea water samples. When visible light absorbance detection was used, the method proved suitable for separation of various carotenoids.  相似文献   

14.
Via the ring‐opening reaction of epoxy groups with epinephrine, a novel epinephrine functionalized polymethacrylate monolith with fumed silica nanoparticles has been fabricated for pressurized capillary electrochromatography. The preparation of epinephrine‐modified monoliths has been optimized. In addition, morphology, electroosmotic flow, separation mechanism and column performance have been studied. The internal structure of the monolithic stationary phase was more uniform and the column efficiency increased after the incorporation of nanoparticles. With this column, satisfactory separation capability of aromatic compounds and alkaloids has been achieved and the column efficiency for naphthalene reached 138 696 plates/m. As for the real sample, 3 alkaloids were separated in Huanglian Shangqing capsules, a Chinese traditional medicine.  相似文献   

15.
谢晶鑫  毕开顺  钱小红  张养军 《色谱》2009,27(2):186-190
采用甲基丙烯酸月桂酯为基础功能单体,乙二醇二甲基丙烯酸酯为交联剂,正十二醇、1,4-丁二醇及二甲基亚砜为致孔剂,在内径为75 μm的石英毛细管内制备了具有良好机械性能及化学稳定性的反相毛细管整体柱。考察了致孔剂的种类、比例以及交联剂在单体混合物中的比例对柱压和分离效果的影响;以单体15%、交联剂15%、致孔剂70%(均为质量分数)作为优化配方,在70 ℃条件下反应24 h;并对所合成的毛细管整体柱进行了电镜表征,测试了流速、柱长与柱压的关系。结果表明,毛细管整体柱的通透性良好,可通过延长柱长的方法提高分离效果。将所制备的毛细管整体柱装于纳升级高效液相色谱仪上进行牛血清白蛋白及血浆样本的胰蛋白酶酶切液的分离,获得了比较理想的分离效果。  相似文献   

16.
In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16–1.20%, RSD; n = 3) and column-to-column (0.26–2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns.  相似文献   

17.
Monolithic stationary phases for use in capillary electrochromatography were prepared by incorporation of mesoporous silica particles (of type MCM-41 or UVM-7) in a polymer obtained from butyl methacrylate and ethylene glycol dimethacrylate as monomers, 1,4-butanediol and 1-propanol as porogen, and azobisisobutyronitrile as initiator. The stability of the dispersions with varying fractions of silica particles was investigated by UV-vis spectrometry. Using continuous stirring during the capillary filling and short UV-polymerization times, polymeric beds with homogenously dispersed mesoporous particles (with contents up to 35 wt% of silica) are obtained. The resulting hybrid monolithic columns were characterized using scanning electron microscopy. The chromatographic performance of these novel stationary phases was evaluated by using alkyl benzenes and benzoic acid derivatives as test analytes. The use of these polymers leads to increased retention and separation efficiency compared to the parent monolith. The column efficiency reached values of up to 140,000 plates m?1. The resulting hybrid monolithic columns also exhibited a satisfactory reproducibility with relative standard deviations of ca. 14% (batch-to-batch).
Graphical abstract Hybrid polymer monoliths containing large amounts of mesoporous silica-particles (MCM-41 or UVM-7) were prepared by UV initiation. The prepared monolithic columns showed higher retention times and efficiencies than parent monoliths for alkyl benzenes and benzoic acid derivatives.
  相似文献   

18.
A simple, easy and economical approach for the preparation of a hybrid carbon/silica monolithic capillary column was described for the first time by using silica monolith as framework in combination with hydrothermal carbonization at 180°C. During the preparation process, formamide was introduced to the reaction solutions to reduce the dissolution rate of monolithic silica skeleton and its optimal concentration was 1.5 M. Fourier transform infrared spectrometry, scanning electron microscopy, energy dispersive X‐ray spectrometry, and inverse size exclusion chromatography were carried out to characterize the as‐prepared column. The results demonstrated that carbon spheres ranging from 150 to 1000 nm were successfully attached to the surface of silica skeleton. The prepared hybrid carbon/silica column had a permeability of 4.4 × 10?14 m2. Chromatographic performance of the column was evaluated by separation of various compounds including alkylbenzenes, nucleosides and bases, and aromatic acids. The column exhibited an efficiency of 75 000 plates/m for butylbenzene at the optimal linear velocity of 0.23 mm/s. The successful separation of these compounds and the study on mechanism indicated that the column can be applied in mixed‐mode chromatography.  相似文献   

19.
Monolithic columns have been prepared with a novel bonded silica stationary phase, tetradecylamine bonded silica (TDAS), and used in pressurized capillary electrochromatography (pCEC). The monolithic silica column matrix was prepared by a sol-gel process and then chemically modified with the spacer (3-glycidoxypropyl)trimethoxysilane and tetradecylamine. The introduced embedded polar amine groups dominated the charge on the surface of the monolithic stationary phase and generated an EOF from cathode to anode under acidic conditions. The tetradecyl hydrophobic chains in TDAS provide chromatographic interactions. The chromatographic characteristics of the prepared monolithic column were studied. Some aromatic compounds including alkylbenzenes, aromatic hydrocarbons, phenols, and anilines were successfully separated on the TDAS monolithic column in pCEC mode. As expected, the TDAS monolithic stationary phases exhibit typical reversed-phase electrochromatographic behavior toward neutral solutes due to the introduced tetradecyl groups. Hydrophobic as well as electrophoretic migration processes within the monoliths were observed in the separation of basic anilines. Symmetrical peaks can be obtained for anilines because the embedded polar amine groups on the surface can effectively shield the adsorption of positively charged analytes onto the stationary phase.  相似文献   

20.
Jin W  Fu H  Huang X  Xiao H  Zou H 《Electrophoresis》2003,24(18):3172-3180
Preparation of a poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic stationary phase for the use in capillary electrochromatography (CEC) has been improved by optimizing the polymerization conditions. It is observed that the reaction time strongly affects column efficiency, while the proportion of isooctane in porogen influences peak symmetry of some solutes seriously. The lifetime of the monolithic columns prepared mainly depends on the pH of buffers used. Reproducibility of electroosmotic flow (EOF) from batch to batch columns are lower than 2.8% relative standard deviation. Unlike other types of capillary electrochromatographic monoliths, a pH-dependent EOF was observed on this type of column. Separation of various types of compounds including aromatic hydrocarbons, hormones, anilines, basic pharmaceuticals, and peptides was achieved. The facile preparation and wide application of this monolithic column may make styrene-based polymer a potential stationary phase in CEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号