首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new approach to nondestructive magic-angle spinning (MAS) nuclear magnetic resonance (NMR) for thin films. In this scheme, the sample put on the top of a rotor is spun using the conventional MAS system, and the NMR signals are detected with an additional coil. Stable spinning of disk-shaped samples with diameters of 7 mm and 12 mm at 14.2 and 7 kHz are feasible. We present 7Li MAS NMR experiments of a thin-film sample of LiCoO2 with a thickness of 200 nm. Taking advantage of the nondestructive feature of the experiment, we also demonstrate ex situ experiments, by tracing conformation change upon annealing for various durations. This approach opens the door for in situ MAS NMR of thin-film devices as well.  相似文献   

2.
A new NMR experiment which allows a measurement of the chemical shift anisotropy (CSA) tensor under magic angle spinning (MAS) is described. This correlates a fast MAS spectrum in the omega2 dimension with a sideband pattern in omega1 in which the intensities mimic those for a sample spinning at a fraction of the rate omega r/N, and these sidebands result from an amplification by a factor N of the modulation caused by the CSA. Standard methods can be used to extract the principal tensor components from the omega1 sideband patterns, and the nature of the experiment is such that the use of a large number of t1 increments can be avoided without compromising the resolution of different chemical sites. The new experiment is useful for accurately measuring narrow shift anisotropies.  相似文献   

3.
Thetwo-dimensional phase-adjusted spinning sidebands (2D PASS) experiment is a useful technique for simplifying magic-angle spinning (MAS) NMR spectra that contain overlapping or complicated spinning sideband manifolds. The pulse sequence separates spinning sidebands by their order in a two-dimensional experiment. The result is an isotropic/anisotropic correlation experiment, in which a sheared projection of the 2D spectrum effectively yields an isotropic spectrum with no sidebands. The original 2D PASS experiment works best at lower MAS speeds (1-5 kHz). At higher spinning speeds (8-12 kHz) the experiment requires higher RF power levels so that the pulses do not overlap. In the case of nuclei such as (207)Pb, a large chemical shift anisotropy often yields too many spinning sidebands to be handled by a reasonable 2D PASS experiment unless higher spinning speeds are used. Performing the experiment at these speeds requires fewer 2D rows and a correspondingly shorter experimental time. Therefore, we have implemented PASS pulse sequences that occupy multiple MAS rotor cycles, thereby avoiding pulse overlap. These multiple-rotor-cycle 2D PASS sequences are intended for use in high-speed MAS situations such as those required by (207)Pb. A version of the multiple-rotor-cycle 2D PASS sequence that uses composite pulses to suppress spectral artifacts is also presented. These sequences are demonstrated on (207)Pb test samples, including lead zirconate, a perovskite-phase compound that is representative of a large class of interesting materials.  相似文献   

4.
A two-dimensional experiment for measuring chemical shift anisotropy (CSA) under fast magic-angle spinning (MAS) is presented. The chemical shift anisotropy evolution is amplified by a sequence of π-pulses that repetitively interrupt MAS averaging. The amplification generates spinning sideband manifolds in the indirect dimension separated by the isotropic shift along the direct dimension. The basic unit of the pulse sequence is designed based on the magic-angle turning experiment and can be concatenated for larger amplification factors.  相似文献   

5.
An electron paramagnetic resonance (EPR) setup for line narrowing experiments with fast sample spinning at variable angles between the rotation axis and the static magnetic field is described and applied in the magic-angle sample spinning (MAS) EPR experiment at X-band frequencies (9.5 GHz). Sample spinning speeds up to 17 kHz at temperatures down to 200 K can be achieved with rotors of 4-mm outer and 2.5-mm inner diameter without severe losses in microwave amplitude compared to standard pulse EPR probeheads. A phase cycle is introduced that provides pure absorption MAS EPR spectra and allows one to distinguish between positive and negative frequency offsets (pseudo-quadrature detection). Possible broadening mechanisms in MAS EPR spectra are discussed. It is demonstrated both by theory and by experiment that the MAS EPR experiment requires excitation bandwidths that are comparable to the total spectral width, since otherwise destructive interference between contributions of spins with similar resonance offsets suppresses the signal. Experimental observations on the E(1) center in gamma-irradiated silica glass and on the SO(-)(3) radical in gamma-irradiated sulfamic acid are reported.  相似文献   

6.
Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.  相似文献   

7.
A hydrofluoric acid (HF)-treated soil sample was studied by 13C NMR spectroscopy. Cross polarization (CP) Magic Angle Spinning (MAS) 13C spectral editing and relative CP peak quantitation, obtained through variable-contact-time experiments, were used to aid the interpretation of the spectrum. The combination of these two types of experiment allowed to obtain a higher degree of detail on the composition of the sample with respect to a standard CP MAS experiment.  相似文献   

8.
The utility of gradient selection in MAS spectroscopy of dipolar solids is explored in two examples. In the first, rotor-synchronized gradients of appropriate strength and duration are applied to select1H double-quantum coherences. The resulting DQ MAS spectrum of adamantane is compared with that acquired by the corresponding phase-cycling technique. As a second example, a1H 2D exchange MAS experiment is performed on an elastomer sample. In this experiment, a gradient is applied to remove undesired coherences that would otherwise distort the spectrum for short mixing times. The diagonal-peak intensities in the resulting spectrum show a linear decrease with increasing mixing time indicating cross-relaxation by slow chain motions as the relevant process. Both types of experiments demonstrate the potential of gradient-selection techniques for MAS spectroscopy of dipolar solids.  相似文献   

9.
Fast magic-angle spinning (MAS) holds promise for new approaches to pulsed high-resolution NMR in solids where homogeneous interactions dominate. Prerequisite for developing new pulse methods is the understanding of signal encoding by spin interactions under MAS conditions and of interferences between MAS and pulses. This review discusses corresponding strategies and techniques in a coherent way with particular concentration on homonuclear decoupling techniques for line-narrowing in solids.  相似文献   

10.
As demonstrated by means of the one-dimensional solid-state MAS exchange experiment (CODEX), the rate of the proton driven spin diffusion between backbone (15)N nuclei in totally enriched protein depends strongly on the magic angle spinning (MAS) frequency: spin diffusion at MAS frequency 16 kHz is about 4-5 times slower as compared to that at MAS frequency 1 kHz which is due to the averaging of the homo- and hetero-nuclear dipolar interactions by MAS. It is important that even at the highest MAS frequencies used in our experiments the spin diffusion rate is comparable or larger than typical values of the spin-lattice relaxation rates of backbone nitrogens in solid proteins. Thus, the precise quantitative analysis of (15)N T(1)'s in totally enriched solid proteins may lead to wrong quantitative results. On the other hand, the effectiveness of the (15)N-(15)N correlation and structure determination experiments making use of (15)N-(15)N distances can be increased by decreasing the MAS frequency as far as possible, which is counter intuitive to the commonly applied fast MAS conditions in order to reduce the dipolar-broadened line widths for increased spectral resolution.  相似文献   

11.
A new analytical Liouville-space representation of the time-propagator under magic angle spinning (MAS) is introduced using the formalized quantum Floquet theory. This approach has the advantage that it is applicable to the analysis of any type of NMR experiment where MAS is combined with multiple-pulse excitation. General relationships describing the spectral parameters in multiple-quantum (MQ) MAS spectra are derived in this representation. Their use is illustrated with an application to double-quantum (DQ) NMR spectra of dipolar-coupled multi-spin systems. Corresponding to the separation of the MAS time-propagator into a rotor modulated and a dephasing component, two distinct mechanisms for DQ excitation are identified. One of them exploits the rotor-modulated component to excite DQ coherences through dipolar-recoupling techniques, which are familiar for spin pairs. Analytical expressions of the integral intensities and linewidths in the resulting DQ sideband pattern are derived in the form of power series expansions of the inverse rotor frequency, of which coefficients depend on structural parameters. In a multi-spin system they can most reliably be extracted in the fast spinning regime. The other mechanism exploits the dephasing component, which is characteristic to multi-spin systems only. This is shown to give rise to DQ coherences by free evolution at full rotor periods. The possibility to exploit it for selective excitation of higher order MQ coherences is discussed. In either case, the dephasing component also leads to residual broadening. The main results of the theoretical developments are demonstrated experimentally on adamantane.  相似文献   

12.
A pulse scheme for phase sensitive detection of two-dimensional (2D) homonuclear correlation magic angle spinning (MAS) NMR spectra is proposed. This scheme combines the time proportional phase increment phase cycling scheme and the time reversal 2D MAS experiment. This approach enables the direct detection of purely absorptive 2D MAS spectra, containing cross peaks that connect only diagonal peaks of dipolar correlated spins.  相似文献   

13.
By numerical simulations MAS and QCPMG methods for acquiring spectra of spin-1 nuclei were compared in order to determine the most sensitive experiment for analysis of molecular dynamics. To comply with the large quadrupolar constants for 14N and the CSA reported for 6Li both of these interactions are included up to second order. For 2H and 6Li both QCPMG and single-pulse MAS experiments were suitable for dynamics studies whereas the single-pulse MAS experiment were the method of choice for investigation of 14N dynamics for C(Q)'s larger than 750kHz at 14.1T. This property prohibits excitation of the 14N lineshape using either single hard or softer composite rf-pulses. Focusing on 14N it was demonstrated that the centerband lineshape is sensitive toward both off-MAS and CSA effects. In addition, excitation by real-time pulses showed that proper lineshapes corresponding to a site with a C(Q) of 3MHz may be excited by a very short pulse.  相似文献   

14.
A new two-dimensional heteronuclear multiple-quantum magic-angle spinning (MQ MAS) experiment is presented which combines high resolution for the half-integer quadrupolar nucleus with information about the dipolar coupling between the quadrupolar nucleus and a spin I=1/2 nucleus. Homonuclear MQ coherence is initially created for the half-integer quadrupolar nucleus by a single pulse as in a standard MQ MAS experiment. REDOR recoupling of the heteronuclear dipolar coupling then allows the creation of a heteronuclear multiple-quantum coherence comprising multiple- and single-quantum coherence of the quadrupolar and spin I=1/2 nucleus, respectively, which evolves during t1. Provided that the t1 increment is not rotor synchronized, rotor-encoded spinning-sideband patterns are observed in the indirect dimension. Simulated spectra for an isolated IS spin pair show that these patterns depend on the recoupling time, the magnitude of the dipolar coupling, the quadrupolar parameters, as well as the relative orientation of the quadrupolar and dipolar principal axes systems. Spectra are presented for Na2HPO4, with the heteronuclear 23Na-1HMQ MAS experiments beginning with the excitation of 23Na (spin I=3/2) three-quantum coherence. Coherence counting experiments demonstrate that four- and two-quantum coherences evolve during t1. The heteronuclear spinning-sideband patterns observed for the three-spin H-Na-H system associated with the Na(2) site are analyzed. For an IS2 system, simulated spectra show that, considering the free parameters, the spinning-sideband patterns are particularly sensitive to only, first, the angle between the two IS internuclear vectors and, second, the two heteronuclear dipolar couplings. It is demonstrated that the proton localization around the Na(2) site according to the literature crystal structure of Na2HPO4 is erroneous. Instead, the experimental data is consistent with two alternative different structural arrangements, whereby either there is a deviation of 10 degrees from linearity for the case of two identical Na-H distances, or there is a linear arrangement, but the two Na-H distances are different. Furthermore, the question of the origin of spinning-sidebands in the (homonuclear) MQ MAS experiment is revisited. It is shown that the asymmetric experimental MQ sideband pattern observed for the low-C(Q) Na(2) site in Na(2)HPO4 can only be explained by considering the 23Na chemical shift anisotropy.  相似文献   

15.
A two-dimensional (13)C/(14)N heteronuclear multiple quantum correlation (HMQC) experiment using dipolar recoupling under magic-angle spinning (MAS) is described. The experiment is an extension of the recent indirect (13)C detection scheme for measuring (14)N quadrupolar coupling under MAS. The recoupling allows the direct use of the much larger dipolar interaction instead of the small J and residual dipolar couplings for establishing (13)C/(14)N correlations. Two recoupling methods are incorporated into the HMQC sequence, both applying rf only to the observed (13)C spin. The first one uses the REDOR sequence with two pi-pulses per rotor cycle. The second one uses a cw rf field matching the spinning frequency, known as rotary resonance. The effects of CSA, T(2)(') signal loss, MAS frequency and stability and t(1)-noise are compared and discussed.  相似文献   

16.
In nanosecond-laser flash photo-CIDNP MAS NMR, polarization generation (PG) proceeds much faster than longitudinal spin relaxation. With a nanosecond-laser setup linked to the NMR console the repetition time of the experiment is then limited by the minimum recycle delay of the NMR spectrometer and the maximum repetition rate of laser flashes. These limits can only be reached if polarization left after the NMR experiment is completely canceled before the next laser flash. We introduce a presaturation pulse sequence, based on three (pi/2) (13)C pulses and optimized timing and phase cycling that allows for such efficient polarization extinction (PE). The technique is demonstrated on selectively isotope labeled bacterial reaction centers (RCs) of Rhodobacter (Rb.) sphaeroides wildtype (WT). High-quality (13)C photo-CIDNP MAS NMR spectra are obtained using cycle rates up to 4 Hz. The PE-PG strategy proposed here provides a general experimental scheme for reduction of measurement time in magnetic resonance experiments based on fast PG.  相似文献   

17.
Signal enhancement in heteronuclear correlation spectra as well as signal selection in 1H experiments can be achieved through inverse, i.e., 1H, detection in the solid state under fast MAS conditions. Using recoupled polarization transfer (REPT), a heteronuclear 1H-15N single-quantum correlation (HSQC) experiment is presented whose symmetrical design allows the frequency dimensions to be easily interchanged. By observing the 15N dimension indirectly and detecting on 1H, the sensitivity is experimentally found to be increased by factors between 5 and 10 relative to conventional 15N detection. In addition, the inverse 1H-15N REPT-HSQC scheme can be readily used as a filter for the 1H signal. As an example, we present the combination of such a heteronuclear filter with a subsequent 1H-1H DQ experiment, yielding two-dimensional 15N-edited 1H-1H DQ MAS spectra. In this way, specific selection or suppression of 1H resonances is possible in solid-state MAS experiments, by use of which the resolution can be improved and information can be unravelled in 1H spectra.  相似文献   

18.
The versatility of using a stochastic pulse sequence to elucidate peaks with a wide range of shifts, peak widths, and T(1) relaxation times is demonstrated. A stochastic sequence is combined with high speed magic angle spinning (MAS) to obtain the broad and largely shifted peak associated with (31)P in LiNiPO(4). A stochastic sequence is also used to obtain a spectrum of 85% H(3)PO(4), which has a much longer T(1) value. The signal-to-noise was comparable for spectra of 85% H(3)PO(4) obtained with either a stochastic sequence or an optimized Ernst angle experiment. Experimental parameters for the stochastic experiment are set depending only on the ringdown of the probe and not on any inherent qualities of the sample. A stochastic sequence, therefore, combined with MAS provides a useful strategy for finding peaks with unknown T(1) relaxation constants, peak widths, and shifts.  相似文献   

19.
Cross-polarization from (1)H to the multiple-quantum coherences of a quadrupolar nucleus is used in combination with the two-dimensional multiple-quantum magic angle spinning (MQMAS) NMR experiment in order to extract high-resolution CPMAS NMR spectra. The technique is demonstrated on (23)Na (S = 3/2), (17)O, (27)Al (both S = 5/2), and (45)Sc (S = 7/2) nuclei, showing the applicability of multiple-quantum cross-polarization to systems with differing spin quantum number, gyromagnetic ratio, and relative nuclide abundance. The utility of this two-dimensional MAS NMR experiment for spectral editing and site-specific measurement of cross-polarization intensities is demonstrated. The possibility of direct cross-polarization to higher order multiple-quantum coherences is also considered and three-, five-, and seven-quantum cross-polarized (45)Sc MAS NMR spectra are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号