首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excess molar enthalpies of (1–x)water+x1,4-dioxane have been measured at four different temperatures. All the mixtures showed negative enthalpies in the range of low mole fraction but positive ones in the range of high mole fraction of 1,4-dioxane. Excess enthalpies were increased with increasing temperature except those of at 278.15 K. Partial molar enthalpies have maximum around x=0.13 and minimum around x=0.75. Three different behaviors for the concentration dependence of partial molar enthalpies were observed for all temperature. Theoretical calculations of molecular interactions of three characteristic concentrations were carried out using the molecular orbital method.  相似文献   

2.
The study of physical properties of binary liquid mixtures is of great importance for understanding and characterisation of molecular interactions. In the same way, some models attempt to correlate viscosity in liquid mixtures to release eventual interactions, structures’ change and peculiar behaviours. Grunberg–Nissan (GN) parameters for viscosity (η) in 1,4-dioxane?+?water mixtures over the entire range of mole fractions under atmospheric pressure and from 293.15?K to 320.15?K were calculated from experimental dynamic viscosities presented in previous works. Many experimenters investigate physicochemical properties using numerous models to derive some interpretations and conclusions. The present work comes within the framework of correlating different used equations to restrict investigations with an optimal of number of these models. Relationship between the GN, Arrhenius and Jouyban–Acree parameters for viscosity is shown in one binary mixture which dielectric constants of their pure components are very distinct.  相似文献   

3.
The static permittivity and viscosity of glycerol–formamide (Gly–FA) binary mixtures were measured at eleven concentrations over the entire composition range and at temperatures T=288.15, 303.15, 318.15 and 333.15 K. The excess static permittivity and excess viscosity of the mixtures were determined using the mole-fraction additive mixture law. Results indicated that the molecular dielectric polarization in Gly–FA mixtures is governed by 1:1 complexes with a decrease in number of H-bonded parallel aligned dipolar ordering at all of the investigated temperatures. The 2Gly:FA complexes facilitate the viscous flow process and the number of these complexes decreases with increasing temperature. The apparent activation energy of viscous flow, determined from Arrhenius plots, increases with increases of the Gly concentration in the mixtures. The electric-field-induced increment of the Helmholtz free energy and the entropy of these binary mixtures were determined from the temperature dependence of the static permittivity and its derivative, respectively.  相似文献   

4.
The excess molar volume (V E), viscosity deviations (Δη) and Gibbs excess energy of activation for viscous flow (G∗E) have been investigated from density (ρ) and viscosity (η) measurements of eight binary mixtures of 1,3-dioxolane with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, and i-amyl alcohol over the entire range of mole fractions at 303.15 K. The viscosity data have been correlated with the Grunberg and Nissan equation. Furthermore, excess isentropic compressibilities (KSE) have been calculated from ultrasonic speed measurements of these binary mixtures at 303.15 K. The deviations have been fitted by a Redlich–Kister equation and the results are discussed in terms of molecular interactions and structural effects. The excess properties are found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures. The systems studied exhibit very strong cross association through hydrogen bonding.  相似文献   

5.
Shear viscosity deviations Δη have been investigated by using density (ρ) and kinematic viscosity (ν) measurements for isobutyric acid + water (IBA + W) mixtures over the entire range of mole fractions at atmospheric pressure and at two temperatures (301.15 and 315.15 K). This study extends the temperature range from the five other temperatures investigated in a previous work, 1.055 K≤(TT c )≤14.055 K, both far from and close to the critical temperature. This system exhibits very large positive values of Δη due to increased hydrogen bonding interactions and the correlation length between unlike molecules in the critical region, and to very large differences between the molar volumes of the pure components at low temperatures. The results were also fitted with the Redlich–Kister polynomial equations and the recently proposed Herráez correlation equation. Comparisons between the two models at different temperatures and number of parameters are discussed. We note that, in this system where the shear viscosity η as a function of mole fraction (x 1) of IBA presents a maximum, experimental data are in agreement with the two correlation models when more than three parameters are employed, especially for temperatures far from the critical temperature.  相似文献   

6.
Experimental molar heat capacity data (Cp m) and excess molar heat capacity data (CpEm\mathit{Cp}^{\mathrm{E}}_{\mathrm{m}}) of binary mixtures containing water + (formamide or N,N-dimethylformamide or dimethylsulfoxide or N,N-dimethylacetamide or 1,4-dioxane) at several compositions, in the temperature range 288.15 K to 303.15 K and atmospheric pressure, have been determined using a modified 1455 PAAR solution calorimeter. The excess heat capacities are positive for aqueous solutions containing 1,4-dioxane, N,N-dimethylformamide or dimethylsulfoxide, negative for solutions containing water + formamide and show a sigmoid behavior for mixtures containing water + N,N-dimethylacetamide, over the whole composition range. The experimental excess molar heat capacities are discussed in terms of the influence of temperature and of the organic solvent type present in the binary aqueous mixtures, as well as in terms of the existing molecular interactions and the organic solvent’s molecular size and structure.  相似文献   

7.
Viscosity deviations from ideal mixing for 1,4-dioxane + water mixtures over the entire range of composition at temperatures of (293.15, 303.15 and 313.15) K and atmospheric pressure were calculated from experimental viscosity data presented in a previous work. The temperature range was extended to 323.15 K with data from the literature. This system exhibits very large positive deviations due to strong heteromolecular interactions and also due to size differences of the unlike molecules. The viscosity data as well as their corresponding relative functions were used to test the applicability of two correlative equations: the reduced Redlich-Kister equation and the recently proposed Herráez equation. These relative functions are important to reduce the effect of temperature and, consequently, to reveal the effects of different types of interactions. Their correlation abilities at different temperatures, and using different numbers of parameters, are discussed for the case of limited experimental data. Generally, good agreement between experimental and calculated data was obtained with both equations provided more than three parameters were employed.  相似文献   

8.
The excess molar volume VE, shear viscosity deviation Δη and excess Gibbs energy of activation ΔGE of viscous flow have been investigated by using density (ρ) and shear viscosity (η) measurements for isobutyric acid + water (IBA+W) mixtures over the entire range of mole fractions at five different temperatures, both near and close to the critical temperature (2.055K ≤ (TTc)≤ 13.055K). The results were also fitted with the Redlich–Kister equation. This system exhibited very large negative values of VE and very large positive values of Δη due to increased hydrogen bonding interactions and correlation length between unlike molecules in the critical region and to very large differences between the molar volumes of the pure components at low temperatures. The activation parameters ΔH and ΔS have been also calculated and show that the critical region has an important effect on the volumetric properties.  相似文献   

9.
Excess molar volumes, VE123V^{\mathrm{E}}_{123} of 1,3-dioxolane or 1,4-dioxane (1) + benzene or toluene (2) + formamide or + N,N-dimethylformamide (3) ternary mixtures at 308.15 K and at atmospheric pressure have been determined dilatometrically over the entire composition range. The excess molar volumes data of these ternary systems were fitted to the Redlich–Kister equation. The data have been analyzed in terms of Graph theory (model) to understand the nature and strength of molecular interactions existing in these mixtures. It has been observed that VE123V^{\mathrm{E}}_{123} values predicted by Graph theory compare well with their corresponding experimental values.  相似文献   

10.
Summary. Density (ρ) and viscosity (η) values of the binary mixtures of DMP + 1-pentanol, 1-butanol, and 1-propanol over the entire range of mole fraction at 298.15 and 303.15 K were measured in atmospheric pressure. The excess molar volume (V E), viscosity deviations (Δη), and excess Gibbs energy of activation for viscous flow (G*E) were calculated from the experimental measurements. These results were fitted to Redlich–Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of McAllister. The calculated functions have been used to explain the intermolecular interaction between the mixing components.  相似文献   

11.
Isothermal vapour–liquid equilibrium measurements for mixtures containing cyclic ethers: tetrahydrofuran, tetrahydropyran, 1,3-dioxolane or 1,4-dioxane and 1-chloropentane at the temperatures of 298.15, 313.15 and 328.15 K are reported. The thermodynamic consistency of the VLE measurements was satisfactorily checked with the van Ness method. Activity coefficients were correlated with Wilson, NRTL, and UNIQUAC equations. The calculated excess Gibbs functions for tetrahydrofuran and tetrahydropyran are negative over the whole composition range while for 1,3-dioxolane and 1,4-dioxane the excess Gibbs functions are positive.  相似文献   

12.
Conductivities of symmetrical and unsymmetrical electrolytes of 2:2, 3:3, 1:2, 2:1 and 1:3 types in ethanol–water and the 1,4-dioxane–water mixtures were analyzed using the Quint-Viallard conductivity equation and taking into account the ion association effect. The molar limiting conductances and the ion association constants were reexamined for various multivalent electrolytes. One non-aqueous system, methanol–ethylene glycol mixtures, was also considered. The limiting conductances were also examined in the framework of universal curves of limiting conductances and the excess Walden products introduced by the author. These new concepts in the analysis of conductance data allow the estimation of values of limiting conductances of electrolytes or ions, to give an indication about the quality of the conductivity measurements and the type of interactions expected in the systems. It was found that for any type of electrolyte only one universal curve of limiting conductances exists. In the water-rich mixtures, attractive interactions (structure-making effects) are expected when electrolytes are added to mixtures with ethanol or with 1,4-dioxane. In contrast, in ethylene glycol–methanol-rich mixtures repulsive interactions (structure-breaking effects) are more likely.  相似文献   

13.
The viscosity deviation (Δη), the excess molar volume (V E) and the ultrasonic speed (u) have been investigated from viscosity (η) and density (ρ ) measurements of binary liquid mixtures of 1,2-dimethyoxyethane with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol or octan-1-ol over the entire range of composition at 298.15 K. The excess volumes are negative over the entire range of composition for all of the mixtures with the exception of hexan-1-ol and octan-1-ol. The excess isentropic compressibilities (K S E) and viscosity deviations are negative for all of the mixtures. The magnitudes of the negative values of V E decrease with the number of carbon atoms of the alkan-1-ol. The trend of increasing K S E values with the chain length of the alkanol is similar to that observed in the case of V E. Graphs of V E, Δ η, K S E, Δ u, L f E and Z E against composition are presented as a basis for a qualitative discussion of the results.  相似文献   

14.
The preferential solvation parameters (δx1,3) of indomethacin (IMC) in 1,4-dioxane + water binary mixtures were derived from their thermodynamic properties by means of the inverse Kirkwood–Buff integrals method. δx1,3 is negative in water-rich and 1,4-dioxane-rich mixtures but positive in cosolvent compositions from 0.17 to 0.69 in mole fraction of 1,4-dioxane at 298.15 K. It is conjecturable that in water-rich mixtures, the hydrophobic hydration around the aromatic and methyl groups of the drug plays a relevant role in the solvation. The higher solvation by 1,4-dioxane in mixtures of similar cosolvent compositions could be mainly due to polarity effects. Finally, the preference of this drug for water in 1,4-dioxane-rich mixtures could be explained in terms of the higher acidic behavior of water molecules interacting with the hydrogen-acceptor groups present in IMC.  相似文献   

15.
16.
The thermodynamic and transport proprieties have been determined for the whole concentration range of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P14) and propylene carbonate (PC) binary mixtures in the temperature range 293.15–318.15 K. Strong effects of the mole fraction and temperature on these properties have been observed. The isobaric expansivities and excess properties have been evaluated. Their corresponding coefficients were positive but the excess volume had both negative and positive values. The viscosity parameter was found to be temperature-dependant and followed the Arrhenius law. The variation of activation energies for viscous flow E a,η versus the ILs concentration exhibited a change in the medium structure. The conductivity-temperature relationship was found to have a better fitting on the Vogel-Tammann-Fulcher model than on the Arrhenius law. In addition, the variation of conductivity with the molar fraction was well described by the Casteel-Amis equation. Finally, the Walden product showed significant dependence of the conductivity on the viscosity of the medium. The results allowed good characterisation of both the ruling interactions and the medium structure.  相似文献   

17.
The equilibrium solubility and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K was reported. Mole fraction solubility varies continuously from 2.85 × 10–9 in neat water to 2.39 × 10–3 in neat 1,4-dioxane. Solubility behaviour was adequately correlated by means of the Jouyban-Acree model. Based on the inverse Kirkwood-Buff integrals, preferential solvation parameters were calculated. Triclocarban is preferentially solvated by water in water-rich mixtures (0.00 < x1 < 0.18) and also in 1,4-dioxane-rich mixtures (0.78 < x1 < 1.00) but preferentially solvated by 1,4-dioxane in mixtures with similar solvent compositions.  相似文献   

18.
The data on excess volume (V E), density (ρ), viscosity (η) and speeds of sound (u) for the binary mixtures of tert-butylamine (TBA) + methyl acetate (MA), + ethyl acetate (EA), + butyl acetate (BA) and + isoamyl acetate (IAA) at 303.15 K were measured experimentally over the entire range of composition. Speeds of sound were evaluated using Jacobson’s free length theory (FLT) and Schaaffs’ collision factor theory (CFT). The viscosity data were analyzed on the basis of the corresponding states approach and the Grunberg and Nissan treatment. The experimental results for excess volume, deviation in isentropic compressibility and deviation in viscosity were discussed in terms of molecular interactions between unlike molecules. A Redlich-Kister type equation was used to fit the experimental data on excess volume, deviation in compressibility and deviation in viscosity.  相似文献   

19.
Abstract

This paper reports excess volumes, VE , and viscosity deviations, Δ\eta, for binary mixtures of 2-methyl-1-chloropropane with an isomer of butanol at the temperatures 298.15 K and 313.15 K. These properties were obtained from density and viscosity measurements. The results are correlated by means of a Redlich-Kister type equation, and interpreted in terms of molecular interactions. The systems show positive values of VE except in a short range of compositions for mixtures containing primary butanols (1-butanol at both temperatures and 2-methyl-1-propanol at 298.15 K), whereas Δ\eta presents negative values at both temperatures over the whole composition range.  相似文献   

20.
Protonation constants of carboxylate groups in a variety of compounds were determined in 1,4-dioxane + water solvent mixtures and have been found to depend on the local solvent composition, and their values are modified by adjacent moieties with diferent polarity occurring on the compounds. A relationship has been found between log10K values and solvent composition, and by the neighboring group. Using acetic acid as a reference compound, the extent of the local hydration effect was estimated, and it has been found to be strong for α-ammonium sites, and moderate for nearby peptide and thiol groups. On the other hand, an extra methylene moiety has been found to bring about a moderate dehydration effect. The observed hydration/dehydration effects were observed in the 12–40 mole% range of the actual bulk solvent composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号