首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The contact problem is considered for a system of bodies subject to wear on a common base. The deformation properties of the bodies and the base are described by the Winkler model. The problem is reduced to a system of ordinary differential equations and an integral equation of hereditary type with difference kernel. The solution of the problem is constructed with the use of the Laplace transform. The asymptotics of the solution at large times is studied. The continuity conditions for the contact of each of the bodies with the base are derived.  相似文献   

2.
We study the processes of additive formation of spherically shaped rigid bodies due to the uniform accretion of additional matter to their surface in an arbitrary centrally symmetric force field. A special case of such a field can be the gravitational or electrostatic force field. We consider the elastic deformation of the formed body. The body is assumed to be isotropic with elasticmoduli arbitrarily varying along the radial coordinate.We assume that arbitrary initial circular stresses can arise in the additional material added to the body in the process of its formation. In the framework of linear mechanics of growing bodies, the mathematical model of the processes under study is constructed in the quasistatic approximation. The boundary value problems describing the development of stress–strain state of the object under study before the beginning of the process and during the entire process of its formation are posed. The closed analytic solutions of the posed problems are constructed by quadratures for some general types of material inhomogeneity. Important typical characteristics of the mechanical behavior of spherical bodies additively formed in the central force field are revealed. These characteristics substantially distinguish such bodies from the already completely composed bodies similar in dimensions and properties which are placed in the force field and are described by problems of mechanics of deformable solids in the classical statement disregarding the mechanical aspects of additive processes.  相似文献   

3.
Continuous contact force models for impact analysis in multibody systems   总被引:14,自引:0,他引:14  
One method for predicting the impact response of a multibody system is based on the assumption that the impacting bodies undergo local deformations and the contact forces are continuous. In a continuous analysis, the integration of the system equations of motion is carried out during the period of contact; therefore, a model for evaluating the contact forces is required. In this paper, two such contact force models are presented, both Hertzian in nature and based upon the direct-central impact of two solid particles.At low impact velocities, the energy dissipation during impact can be represented by material damping. A model is constructed based on the general trend of the Hertz contact law in conjuction with a hysteresis damping function. The unknown parameters are determined in terms of a given coefficient of restitution and the impact velocity. When local plasticity effects are the dominant factor accounting for the dissipation of energy at high impact velocities, a Hertzian contact force model with permanent indentation is constructed. Utilizing energy and momentum considerations, the unknown parameters in the model are again evaluated. The two particle models are generalized to an impact analysis between two bodies of a multibody system.  相似文献   

4.
An effective approximate technique for calculating heat transfer, viscous stress, and species components on the windward side of three-dimensional bodies at incidence in hypersonic flow is developed. Using the similarity method, the solution of the three-dimensional problem is reduced to the solution of an axisymmetric problem. For determining the heat flux on a real body, modified two-dimensional equations are solved for equivalent axisymmetric bodies, specially constructed for meridional planes of the original body. For an arbitrary three-dimensional geometry and angle of attack formulas are derived and a conversion program is developed. These make it possible to determine all the parameters of the equivalent body corresponding to a given meridional plane of the original body; then these parameters are used as input data for calculating the viscous flow past the body. The solutions of the two-dimensional equations for the equivalent bodies are in good agreement with more exact solutions of the three-dimensional equations.  相似文献   

5.
In this paper it is shown that, with the aid of the stream surfaces of supersonic flows past cones at zero angle of attack, one can construct a quite broad class of bodies whose shape and aerodynamic characteristics are easily computed. The lines of intersection of the bow shocks are the body ribs. In constrast with bodies constructed with the aid of the stream surfaces behind plane shocks, the cross sections of the bodies considered vary along their length.  相似文献   

6.
The paper considers the problem of onesided frictionless compression of plane elastic bodies that are initially in contact with each other at a point. The first terms of an asymptotic solution of the problem are constructed by the method of joined asymptotic expansions. Determination of the approach of the bodies as a function of the pressing force reduces to calculating socalled of local compliance. The problems of contact of an elastic ring and elastic circular disks with punches and an elastic disk compressed between two elastic strips are considered. An asymptotic model for the quasistatic collision of plane elastic bodies is proposed.  相似文献   

7.
Material structure of bodies that is usually assumed a-priory in continuum mechanics is constructed on the basis of a balance of a given extensive property on spacetime. Body points are identified with worldlines—the integral lines of the flux of the property. The geometric setting assumes that spacetime has only the structure of a differentiable manifold and no particular frame is assumed to be given.  相似文献   

8.
The results of numerical simulation of supersonic flows around hyperelliptic cones with different cross-sections are presented. For solving the problem within the inviscid gas model, the finite volume method based on an integral approximation of the Euler equations is used. The steady-state solution is found using the saturation method. The flow pattern is studied and it is shown that bodies with integral geometric characteristics (midsection area, volume, etc.) similar to those of the elliptic cone but with a more uniform flowfield over most of the lower surface can be constructed.  相似文献   

9.
A nonlinear mathematical model of a system of n rigid bodies undergoing translational vibrations under inertial loading is constructed. The system includes ball supports as a seismic-isolation mechanism and electromagnetic dampers controlled via an inertial feedback channel. A system of differential dynamic equations in normal form describing accelerative damping is derived. The frequencies of small undamped vibrations are calculated. A method for analyzing the dynamic coefficients of rigid bodies subject to accelerative damping is developed. The double phase–frequency resonance of a two-mass system is studied  相似文献   

10.
11.
We study stress concentration near a circular rigid inclusion in an unbounded elastic body (matrix). In the matrix, there are wave motions symmetric with respect to the axis passing through the inclusion center and perpendicular to the inclusion. It is assumed that one of the inclusion sides is completely fixed to the matrix, while the other side is separated and the conditions of smooth contact are realized on that side. The solution method is based on the fact that the displacements caused by waves reflected from the inclusion are represented as a discontinuous solution of the Lamé equations. This permits reducing the original problem to a system of singular integral equations for functions related to the stress and displacement jumps on the inclusion. Its solution is constructed approximately by the collocation method with the use of special quadrature formulas for singular integrals. The approximate solution thus obtained permits numerically studying the stress state in the matrix near the inclusion. Technological defects or constructive elements in the form of thin rigid inclusions contained in machine parts and engineering structure members are stress concentration sources, which may result in structural failure. It is shown that the largest stress concentration is observed near separated inclusions. Static problems for elastic bodies with such inclusions have been studied rather comprehensively [1, 2]. The stress concentration near separated inclusions under dynamic actions on the bodies has been significantly less studied even in the case of harmonic vibrations. The results of these studies can be found in [3, 4], where bodies with a thin separated inclusion were considered, and in [5], where the problem about torsional vibrations of a body with a thin circular separated inclusion was studied. The aim of the present paper is to study stress concentration near such an inclusion in the case of interaction with harmonic waves under axial symmetry conditions.  相似文献   

12.
An interaction between bodies in the vicinity of their contact is investigated. Stresses determining the main part of the forces acting on the bodies in motion are produced in a narrow gap between the bodies in the vicinity of their contact. In many cases the velocity and pressure fields in the vicinity of the contact can be determined and the main asymptotics for the hydrodynamic interaction force can be constructed in the small distance between the surfaces. An overview of the problems solved using this approach is presented. For certain problems new formulations are given. The plausibility of the results is confirmed by comparing with the available exact particular solutions and the experimental data. Owing to the restrictions on the size of the paper, only two-dimensional problems are considered, although the approach developed can be applied to the solution of three-dimensional problems as well.  相似文献   

13.
A study is made of the influence of the boundary layer on the unsteady aerodynamic characteristics of blunt cones oscillating in a supersonic gas stream about zero angle of attack. A solution to the problem is constructed in the framework of the linear theory of bodies of finite thickness. Such an approach has been used [1–3] in the case of the equations of motion of an ideal gas to calculate the unsteady aerodynamic characteristics of sharp and blunt bodies of various configurations. The influence on these characteristics of the viscosity effects due to the presence on the surface of the body of a laminar boundary layer has been taken into account [4–6] for bodies of the simplest shapes (wedge, cone). The present paper considers the unsteady aerodynamic characteristics of cones and investigates the influence of rounding of the tips and laminar and turbulent flow regimes in the boundary layer.  相似文献   

14.
Many planetary and astrophysical bodies are rotating rapidly, fluidic and, as a consequence of rapid rotation, in the shape of an ablate spheroid. We present an efficient element‐by‐element (EBE) finite element method for the numerical simulation of nonlinear flows in rotating incompressible fluids that are confined in an ablate spheroidal cavity with arbitrary eccentricity. Our focus is placed on temporal and spatial tetrahedral discretization of the EBE finite element method in spheroidal geometry, the EBE parallelization scheme and the validation of the nonlinear spheroidal code via both the constructed exact nonlinear solution and the special resonant forcing in the inviscid limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
New swirled flows (flows in channels, flows around bodies of revolution, and flows with a sink or source on the axis of symmetry) are studied. Group solutions constructed from a supergroup, which are generalizations of conical flows, are considered.  相似文献   

16.
This paper is the first endeavour to present the local domain‐free discretization (DFD) method for the solution of compressible Navier–Stokes/Euler equations in conservative form. The discretization strategy of DFD is that for any complex geometry, there is no need to introduce coordinate transformation and the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior dependent points are updated at each time step to impose the wall boundary condition by the approximate form of solution near the boundary. Some points inside the solution domain are constructed for the approximate form of solution, and the flow variables at constructed points are evaluated by the linear interpolation on triangles. The numerical schemes used in DFD are the finite element Galerkin method for spatial discretization and the dual‐time scheme for temporal discretization. Some numerical results of compressible flows over fixed and moving bodies are presented to validate the local DFD method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
刚体单元及其在多体系统动力学中的应用   总被引:1,自引:1,他引:0  
多体系统动力学分析软件要求人工输入形状复杂物体的质量、质心位置和转动惯量,而实际上这些参量并不容易获得。本文探索了一种以组成物体的刚体单元为基本要素的新方法,并结合实际需要具体构造了刚性四面体和刚性梁单元。以刚体单元为基础并内嵌网格剖分模块的分析软件能够自动获得这些参数,从而具备处理任何复杂系统的能力。仿真结果的对比分...  相似文献   

18.
A nonlocal rate-independent large strain theory for elastic-plastic bodies consistent with thermodynamic theory is derived. The theory is based on a strain space formulation, where plastic strain is regarded as a primitive variable, characterised by an appropriate constitutive equation for its rate. Stress and free energy are assumed to be functions of a set of nonlocal variables, constructed from a collection of basic state functions, constituted by strain, plastic strain and a scalar measure of strain hardening. A yield function is introduced depending on the same set of independent, nonlocal variables. Yield criteria, flow rules, and loading conditions are formulated. The consistency condition is not, as in local theory, expressed by an algebraic equation, but by an integral equation defined throughout the region of plastic loading.  相似文献   

19.
This paper considers the contact problem of interaction of a rigid die, a rigid band, and a rigid insert with a viscoelastic layer, a viscoelastic cylinder, and viscoelastic space with a cylindrical cavity, respectively. It is assumed that the die, band, and insert move at a constant velocity along the boundaries of the viscoelastic bodies. In the first stage, the displacement of the boundaries of the above-mentioned bodies is determined as a function of the applied normal loads ignoring friction in the contact area. In the second stage, integral equations are derived to determine contact pressure in the contact problems. In the third stage, approximate solutions of the integral equations are constructed using a modified Multhopp-Kalandia method.  相似文献   

20.
A solution of a variational problem of a slender body with a minimum total radiative heat flux, moving in a gas with a constant velocity, is constructed. It is found that there are three types of the transverse contour of the optimum body: a circumference, a starshaped contour, and a contour consisting of circle arcs and sectors of straight lines. The radiation parameter affects only the shape of the longitudinal contour and does not affect the optimum shape of the transverse contour. It is shown that the use of optimum spatial bodies allows a significant (more than 50%( decrease in the radiative heat flux to the body surface as compared to bodies of revolution with similar geometric characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号