首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cation exchange and anion exchange liquid chromatography were coupled to an ICP-MS and optimised for the separation of 13 different arsenic species in body fluids (arsenite, arsenate, dimethylarsinic acid (DMAA), monomethylarsonic acid (MMAA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA), arsenobetaine (AsB), arsenocholine (AsC), dimethylarsinoyl ethanol (DMAE) and four common dimethylarsinoylribosides (arsenosugars). The arsenic species were determined in seaweed extracts and in the urine and blood serum of seaweed-eating sheep from Northern Scotland. The sheep eat 2–4 kg of seaweed daily which is washed ashore on the most northern Island of Orkney. The urine, blood and wool of 20 North Ronaldsay sheep and kidney, liver and muscle from 11 sheep were sampled and analysed for their arsenic species. In addition five Dorset Finn sheep, which lived entirely on grass, were used as a control group. The sheep have a body burden of approximately 45–90 mg arsenic daily. Since the metabolism of arsenic species varies with the arsenite and arsenate being the most toxic, and organoarsenic compounds such as arsenobetaine the least toxic compounds, the determination of the arsenic species in the diet and their body fluids are important. The major arsenic species in their diet are arsenoribosides. The major metabolite excreted into urine and blood is DMAA (95 ± 4.1%) with minor amounts of MMAA, riboside X, TMA and an unidentified species. The occurrence of MMAA is assumed to be a precursor of the exposure to inorganic arsenic, since demethylation of dimethylated or trimethylated organoarsenic compounds is not known (max. MMAA concentration 259 μg/L). The concentrations in the urine (3179 ± 2667 μg/L) and blood (44 ± 19 μg/kg) are at least two orders of magnitude higher than the level of arsenic in the urine of the control sheep or literature levels of blood for the unexposed sheep. The tissue samples (liver: 292 ± 99 μg/kg, kidney: 565 ± 193 μg/kg, muscle: 680 ± 224 μg/kg) and wool samples (10 470 ± 5690 μg/kg) show elevated levels which are also 100 times higher than the levels for the unexposed sheep. Received: 29 February 2000 / Revised: 26 April 2000 / Accepted: 1 May 2000  相似文献   

2.
Brisbin JA  B'hymer C  Caruso JA 《Talanta》2002,58(1):133-145
A gradient anion exchange chromatographic technique was developed for the separation of arsenobetaine (AsB), arsenocholine (AsC), arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in one chromatographic run. This technique used low residue ammonium carbonate buffer and the inductively coupled plasma-mass spectrometry (ICP-MS) chromatograms showed little baseline drift. Gradient elution improved peak shape and peak separation. The separation was completed in approximately 27 min with low detection limits (0.017-0.029 mug As kg(-1)). Baseline resolution of all the arsenic species evaluated was achieved when the concentration of AsC was less than approximately 12.5 mug As kg(-1). This technique was successfully applied to different extracts of a standard reference material, TORT-2, and lobster tissue. AsB was found to be the major arsenic species present. AsC, DMAA, MMAA and As(V) were also found, although MMAA was not detected in all of the TORT-2 extracts. Two unknown peaks found may be due to the presence of arsenosugars or other arsenic species. Discrepancy between extraction recoveries previously determined using flow injection-ICP-MS and the high-performance liquid chromatography-ICP-MS was observed in some cases. The differences may be due to the extraction technique and/or conditions at which the extractions were performed.  相似文献   

3.
Le XC  Cullen WR  Reimer KJ 《Talanta》1994,41(4):495-502
An arsenic specific detection system utilizing on-line microwave digestion and hydride generation atomic absorption spectrometry (MD/HGAAS) is described for arsenic speciation by using high performance liquid chromatography (HPLC). Both ion exchange chromatography and ion pair chromatography have been studied for the separation of arsenite, arsenate, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), and arsenobetaine (AB). When the commonly used mobile phases, phosphate and carbonate buffers at pH 7.5, are used on an anion exchange column, arsenite and AB co-elute. However, selective determination of these two arsenic compounds can be achieved by using the new detection system. Partial separation between arsenite and AB can be achieved by increasing the mobile phase pH to 10.3 and by using a polymer based anion exchange column. The detection limit obtained by using anion exchange chromatography with MD/HGAAS detection is approximately 10 ng/ml (or 200 pg for a 20-mul sample injection) for arsenite, DMAA and AB, 15 ng/ml (or 300 pg) for MMAA, and 20 ng/ml (or 400 pg) for arsenate. Complete separation of the five arsenic compounds is achieved on a reversed phase C18 column by using sodium heptanesulfonate as ion pair reagent. Comparable resolution between chromatographic peaks is obtained by using MD/HGAAS detection and inductively coupled plasma mass spectrometry (ICPMS) detection.  相似文献   

4.
Le XC  Cullen WR  Reimer KJ 《Talanta》1993,40(2):185-193
An analytical method based on microwave decomposition and flow injection analysis (FIA) coupled to hydride generation atomic absorption spectrometry (HGAAS) is described. This is used to differentiate arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) from organoarsenic compounds usually present in seafood. Without microwave digestion, direct analysis of urine by HGAAS gives the total concentration of As(III), As(V), MMA and DMA because organoarsenic compounds such as arsenobetaine, usually found in most seafood, are not reducible upon treatment with borohydride and therefore cannot be determined by using the hydride generation technique. The microwave oven digestion procedure with potassium persulfate and sodium hydroxide as decomposition reagents completely decomposes all arsenicals to arsenate and this can be measured by HGASS. Microwave decomposition parameters were studied to achieve efficient decomposition and quantitative recovery of arsenobetaine spiked into urine samples. The method is applied to the determination of urinary arsenic and is useful for the assessment of occupational exposure to arsenic without intereference from excess organoarsenicals due to the consumption of seafood. Analysis of urine samples collected from an individual who ingested some seafood revealed that organoarsenicals were rapidly excreted in urine. After the ingestion of a 500-g crab, a 10-fold increase of total urinary arsenic was observed, due to the excretion of organoarsenicals. The maximum arsenic concentration was found in the urine samples collected approximately between 4 to 17 hr after eating seafood. However, the ingestion of organoarsenic-containing seafoods such as crab, shrimp and salmon showed no effect on the urinary excretion of inorganic arsenic, MMA and DMA.  相似文献   

5.
A single quadrupole high performance liquid chromatography electrospray mass spectrometry system with a variable fragmentor voltage facility was used in the positive ion mode for simultaneous recording of elemental and molecular mass spectral data for arsenic compounds. The method was applicable to the seven organoarsenic compounds tested: four arsenic-containing carbohydrates (arsenosugars), a quaternary arsonium compound (arsenobetaine), dimethylarsinic acid, and dimethylarsinoylacetic acid. It was not suitable for the two inorganic arsenic species arsenite and arsenate. In the case of arsenosugars, qualifying ion data for a characteristic common fragment (m/z 237) was also simultaneously obtained. The method was used to identify and quantify the major arsenosugars in crude extracts of two brown algae.  相似文献   

6.
The effects of light on arsenic accumulation of Thraustochytrium CHN‐1 were investigated. Thraustochytrium CHN‐1, when exposed to blue light from light‐emitting diodes (LEDs), accumulated arsenate added to its growth medium to a much greater extent than Thraustochytrium cells exposed to fluorescent or red light, or when cultured in the dark. Arsenic compounds in Thraustochytrium CHN‐1 were analyzed by high‐performance liquid chromatography, with an inductively coupled plasma mass spectrometer serving as an arsenic‐specific detector. Arsenate, arsenite, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA) and arsenosugar were identified. The order of arsenic species in Thraustochytrium CHN‐1 was arsenic(V)> arsenic(III)> MMAA > DMAA at an arsenic concentration of 10 mg dm?3 in the medium in blue LED light. As it is known that blue light induces the synthesis of certain metabolites in plants and microorganisms, this indicates that the accumulation of arsenic is an active metabolic process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In the marine environment, arsenic accumulates in seaweed and occurs mostly in the form of arsenoribofuranosides (often called arsenosugars). This study investigated the degradation pathways of arsenosugars from decaying seaweed in a mesocosm experiment. Brown seaweed (Laminaria digitata) was placed on top of a marine sediment soaked with seawater. Seawater and porewater samples from different depths were collected and analysed for arsenic species in order to identify the degradation products using high‐performance liquid chomatography–inductively coupled plasma mass spectrometry. During the first 10 days most of the arsenic found in the seawater and the shallow sediment is in the form of the arsenosugars released from the seaweed. Dimethylarsenoylethanol (DMAE), dimethylarsinic acid (DMA(V)) and, later, monomethylarsonic acid (MMA(V)) and arsenite and arsenate were also formed. In the deeper anaerobic sediment, the arsenosugars disappear more quickly and DMAE is the main metabolite with 60–80% of the total arsenic for the first 60 days besides a constant DMA(V) contribution of 10–20% of total soluble arsenic. With the degradation of the soluble DMAE the solubility of arsenic decreases in the sediment. The final soluble degradation products (after 106 days) were arsenite, arsenate, MMA(V) and DMA(V). No arsenobetaine or arsenocholine were identified in the porewater. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Arsenale, arsenite and monomethylarsonic acid (MMAA) have been characterized in soil-pore waters extracted from soils in mineralized and unmineralized areas. Special attention has been paid to collection and storage of the samples. The dominant arsenic species in aerobic soils was arsenate, with small quantities of arsenite and MMAA in mineralized areas. In anaerobic soils arsenite was found to be the major soluble species. The analysis was done with an HPLC anion-exchange column combined with continuous-flow hydride-generation and atomic-absorption spectrometry. A preconcentration column was incorporated to increase the sensitivity.  相似文献   

9.
There are no reports in scientific literature on arsenic species in human saliva after seaweed exposure. The present article reports for the first time the regular excretion patterns of arsenic in the saliva of volunteers with one-time ingestion of Chinese seaweed. Total arsenic and speciation analyses were carried out by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC-ICP-MS). Results show that the excretion time of total arsenic in saliva is a trifle earlier than that in urine, total arsenic in human saliva also shows a regular excretion pattern like that in urine within 72 h after exposure to seaweed. For speciation analysis, four species, including the major dimethylarsinic acid (DMA) species, were detected in urine prior to seaweed intake. Six species were detected in urine after seaweed ingestion, including DMA, methylarsonic acid (MMA), oxo-dimethylarsinoylethanol (oxo-DMAE), thio-dimethlyarsenoacetate (thio-DMAA), arsenite (AsIII) and arsenate (AsV). In saliva samples, three species were found before seaweed ingestion, with the major peak identified as AsIII. After consumption, the kinds of arsenic metabolites in saliva were less than those in urine. The major species was inorganic arsenic (iAs AsIII+AsV), followed by DMA, MMA and a trace amount of oxo-DMAE. Taken together, the present study suggests that saliva assay can be used as a potential tool for understanding the regular excretion pattern of total arsenic after seaweed ingestion. Whether or not it’s an efficient tool for assessing arsenic metabolites in humans exposed to seaweed requires further investigation.  相似文献   

10.
An on-line method capable of the separation of arsenic species was developed for the speciation of arsenite As(III), arsenate As(V), monomethylarsenic (MMA) and dimethylarsenic acid (DMA) in biological samples. The method is based on the combination of high-performance liquid chromatograph (HPLC) for separation, UV photo oxidation for sample digestion and hydride generation atomic fluorescence spectrometry (HGAFS) for sensitive detection. The best separation results were obtained with an anion-exchange AS11 column protected by an AG11 guard column, and gradient elution with NaH2PO4 and water as mobile phase. The on-line UV photo oxidation with 1.5% K2S2O8 in 0.2 mol L(-1) NaOH in an 8 m PTFE coil for 40 s ensures the digestion of organoarsenic compounds. Detection limits for the four species were in the range of 0.11-0.15 ng (20 microL injected). Procedures were validated by analysis of the certified reference materials GBW09103 freeze-dried human urine and the results were in good agreement with the certified values of total arsenic concentration. The method has been successfully applied to speciation studies of blood arsenic species with no need of sample pretreatment. Speciation of arsenic in blood samples collected from two patients after the ingestion of realgar-containing drug reveals slight increase of arsenite and DMA, resulting from the digestion of realgar.  相似文献   

11.
Two independent liquid chromatography inductively coupled plasma-mass spectrometry (LC/ICP-MS) methods for the separation of arsenic species in urine have been developed with quantification by standard additions. Seven arsenic species have been quantified in a new NIST frozen human urine Standard Reference Material (SRM) 2669 Arsenic Species in Frozen Human Urine, Levels 1 and 2. The species measured were: arsenite (As(III)), arsenate (As(V)), monomethylarsonate (MMA), dimethylarsinate (DMA), arsenobetaine (AB), arsenocholine (AC), and trimethylarsine oxide (TMAO). The purity of each arsenic standard used for quantification was measured as well as the arsenic species impurities determined in each standard. Analytical method limits of detection (L D) for the various species in both methods ranged from 0.2 to 0.8 μg L−1 as arsenic. The results demonstrate that LC/ICP-MS is a sensitive, reproducible, and accurate technique for the determination of low-level arsenic species in urine. Measurements of the arsenic species 3 years after initial production of the SRM demonstrate the stability of the arsenic species in the urine reference material.  相似文献   

12.
A method using high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) has been developed to determine inorganic arsenic (arsenite, arsenate) along with organic arsenic compounds (monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium ion and several arsenosugars) in fish, mussel, oyster and marine algae samples. The species were extracted by means of a methanol/water mixture and a dispersion unit in 2 min, with extraction efficiencies ranging from 83 to 107% in the different organisms. Up to 17 different species were determined within 15 min on an anion-exchange column, using a nitric acid gradient and an ion-pairing reagent. As all species are shown in one chromatogram, a clear overview of arsenic distribution patterns in different marine organisms is given. Arsenobetaine is the major compound in marine animals whereas arsenosugars and arsenate are dominant in marine algae. The method was validated with CRM DORM-2 (dogfish muscle). Concentrations were within the certified limits and low detection limits of 8 ng g(-1) (arsenite) to 50 ng g(-1) (arsenate) were obtained.  相似文献   

13.
Six arsenic species, arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine and arsenocholine, were separated by coupled column ion chromatography using carbonate and nitric acid as eluents, and were detected by inductively coupled plasma mass spectrometry. Coupling of an anion column with a cation column made the simultaneous determination of both the cationjic and the anionic arsenic species possible by ion chromatography. Extremely low detection limits, below 0.2 μg/1 (as arsenic), were obtained for all the species studied.  相似文献   

14.
Raab A  Hansen HR  Zhuang L  Feldmann J 《Talanta》2002,58(1):67-76
Wool or hair fibre is a metabolically dead material after it has left the epidermis. During growth the fibre in the root is a metabolically very active organ, which is highly influenced by the health status of the living being. Arsenic is one of the elements that is easily taken up by the cells of the root and stored in the fibre afterwards. Here we show that arsenic can quantitatively be extracted by boiling the wool fibre or hair in water. The high intake of arsenic species by the sheep of North Ronaldsay (the seaweed-eating sheep) leads to a high arsenic concentration in wool (mean 5.2+/-2.3 mug g(-1)). The wool of lambs of these sheep, which are not exposed to seaweed, contains about 10 times less arsenic, which is still elevated compared to uncontaminated wool. The arsenic species identified in wool extract are arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)) and monomethylarsonious acid (MMA(III)) as minor species. The major species is dimethylated arsenic DMA in its tri- and pentavalent form (dimethylarsinous acid (DMA(III)) and dimethylarsinic acid (DMA(V))) accounting for 85% of the specified arsenic in the wool which reflects the amount of dimethylated species (i.e. the arsenoribofuranosides) taken up by seaweed being the main food source of the sheep. However, there are unknown arsenic species in the extract, which are not eluting from a strong anion exchange column. In vitro incubation experiments with this kind of wool showed that it has reducing properties but no demethylation was recorded. The absorption ability of the wool for methylated arsenic species is negligible, while inorganic arsenic is easier to be absorbed in the fibre (11-17%). This means that the species integrity is only guaranteed in terms of the degree of methylation but not in terms of their redox status.  相似文献   

15.
A validated method for the selective extraction of total As species of toxicological interest (arsenite, arsenate and mono- and dimethylated arsenic species) from urine, followed by atomic absorption spectrometric determination, is described. The mechanisms involved in extraction were studied and the extraction method was optimized. The urine sample was acidified with concentrated HCl and KI and sodium hypophosphite were added. Under these conditions, As species were reduced to their corresponding iodide arsines, extracted with toluene and back-extracted with 1 mmol l-1 NaOH solution. Only inorganic arsenic and its metabolites in humans (monomethylarsonic and dimethylarsinic acid) were extracted. Arsenobetaine of dietary origin was not extracted. This method can detect if any As increase in urine originates from inorganic As intoxication or only from dietary non-toxic As species such as arsenobetaine.  相似文献   

16.
A three-organism food chain within a rock pool at Rosedale, NSW, Australia, was investigated with respect to arsenic compounds by high performance liquid chromatography – hydraulic high pressure nebulization – inductively coupled plasma mass spectrometry (HPLC-HHPN-ICP-MS). Total arsenic concentration was determined in the seaweed Hormosira banksii (27.2 μg/g dry mass), in the gastropod Austrocochlea constricta (74.4 μg/g dry mass), which consumes the seaweed, and in the gastropod Morula marginalba (233 μg/g dry mass), which eats Austrocochlea constricta. The major arsenic compounds in the seaweed were (2′R)-dimethyl[1-O-(2′,3′-dihydroxypropyl)-5-deoxy-β-d-ribofuranos-5-yl]arsine oxide and an unidentified compound. The herbivorous gastropod Austrocochlea constricta transformed most of the arsenic taken up with the seaweed to arsenobetaine. Traces of arsenite, arsenate, dimethylarsinic acid, arsenocholine, the tetramethylarsonium cation, and several unknown arsenic compounds were detected. Arsenobetaine accounted for 95% of the arsenic in the carnivorous gastropod Morula marginalba. In Morula marginalba the concentration of arsenocholine was higher, and the concentrations of the minor arsenic compounds lower than in the herbivorous gastropod Austrocochlea constricta.  相似文献   

17.
Determination of arsenic species in marine samples by HPLC-ICP-MS.   总被引:1,自引:0,他引:1  
Arsenic speciation analysis in marine samples was performed using high performance liquid chromatography (HPLC) with ICP-MS detection. The separation of eight arsenic species viz. arsenite (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), arsenobetaine, trimethylarsine oxide (TMAO), arsenocholine and tetramethylarsonium ion (TeMAs) was achieved on a Shiseido Capcell Pak C18 column by using an isocratic eluent (pH 3.0), in which condition As(III) and MMA were co-eluted. The entire separation was accomplished in 15 min. The detection limits for 8 arsenic species by HPLC/ICP-MS were in the range of 0.02 - 0.10 microg L(-1) based on 3sigma of blank response (n=9). The precision was calculated to be 3.1-7.3% (RSD) for all eight species. The method then successfully applied to several marine samples e.g., oyster, scallop, fish, and shrimps. For the extraction of arsenic species from seafood products, the low power microwave digestion was employed. The extraction efficiency was in the range of 52.9 - 112.3%. Total arsenic concentrations were analyzed by using the microwave acid digestion. The total arsenics in the certified reference materials (DORM-2 and TORT-2) were analyzed and agreed with the certified values. The concentrations of arsenics in marine samples were in the range 6.6 - 35.1 microg g(-1).  相似文献   

18.
An automated method for the determination of arsenic acid (AsV), arsenous acid (AsIII), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) was developed using a commercial available flow injection hydride generation system. By carrying out the hydride generation in selected acid media the determination of As(III) alone, of MMAA and DMAA by sum and by different sensitivities, and of all four species is possible.  相似文献   

19.
Experiments have been carried out to study the behaviour of organoarsenicals treated with zeolites by means of speciation analysis. IC-ICP-MS was applied to identify and quantify arsenite, arsenate and the following organoarsenicals: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium bromide (TMA+), arsenobetaine (AsB) and arsenocholine (AsC). Zeolites loaded with ferrous ions did not significantly increase the retention of inorganic arsenic species compared to the native zeolites, while there was a ten-fold removal of arsenate relating to arsenite. The formation of As(V) and DMA in the leachates containing clinoptilolites and mordenites was confirmed in the presence of natural and synthetic zeolites. Arsenobetaine and arsenocholine yielded higher levels of arsenate than the methylated species.  相似文献   

20.
Speciation of arsenic in body fluids   总被引:1,自引:0,他引:1  
Suzuki KT  Mandal BK  Ogra Y 《Talanta》2002,58(1):111-119
Inorganic arsenic is metabolized by consecutive reduction and methylation reactions to dimethylated arsenic (DMA), and then excreted into the urine mostly in the form of DMA. Therefore, arsenic metabolites in the body fluids and organs/tissues are present in the form of inorganic (arsenite and arsenate) and methylated arsenics (MMA and DMA). Although pentavalent arsenics can be present mostly in the form of free ions, trivalent ones may be present more in the forms conjugated with thiol groups of glutathione (GSH) or proteins. Arsenic in the body fluids (plasma, bile and urine) is present in the soluble forms and can be speciated on ion exchange columns by HPLC with on-line detection by an inductively coupled argon plasma-mass spectrometer (ICP-MS). Free forms of arsenite, arsenate, and monomethylarsonous, monomethylarsonic, dimethylarsinous and dimethylarsinic acids in the body fluids have been demonstrated to be speciated simultaneously within 10 min or so on both anion and cation exchange columns together with arsenobetaine (AsB) and arsenocholine (AsC). Trivalent arsenics conjugated with GSH were eluted in intact forms on an anion exchange column but were liberated into free forms on a cation exchange column. Thus, free and GSH-conjugated arsenic metabolites in the bile and urine have been speciated simultaneously on ion exchange columns by HPLC-ICP-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号