首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In this study, using complete orthonormal sets of exponential type orbitals (ETOs), a single closed analytical relation is derived for a large number of different expansions of overlap integrals over Slater type orbitals (STOs) with the same screening parameters in terms of Gegenbauer coefficients. The general formula obtained for the overlap integrals is utilized for the evaluation of multicenter nuclear attraction and electron repulsion integrals appearing in the Hartree–Fock–Roothaan equations for molecules. The formulas given in this study for the evaluation of these multicenter integrals show good rate of convergence and great numerical stability under wide range of quantum numbers, scaling parameters of STOs and internuclear distances.  相似文献   

2.
MAMEDOV B.A. 《中国化学》2004,22(6):545-548
A closed analytical relation is derived for the two-center nuclear attraction integrals over Slater type orbitals (STOs) in terms of binomial coefficients. This formula can be used in highly accurate calculations of the nuclear attraction integrals. The relationships obtained are valid for arbitrary values of quantum numbers and screening constants of STOs and location of nuclei.  相似文献   

3.
Using expansion formulas for central and noncentral interaction potentials (CIPs and NCIPs, respectively) in terms of Slater type orbitals (STOs) obtained by the author (I.I. Guseinov, J. Mol. Model., in press), the multicenter multielectron integrals of arbitrary interaction potentials (AIPs) are expressed through the products of overlap integrals with the same screening parameters and new auxiliary functions. For auxiliary functions, the analytic and recurrence relations are derived. The relationships obtained for multicenter multielectron integrals of AIDs are valid for the arbitrary quantum numbers, screening parameters and location of orbitals.  相似文献   

4.
Three‐center electric multipole moment integrals over Slater‐type orbitals (STOs) can be evaluated by translating the orbitals on one center to the other and reducing the system to an expansion of two‐center integrals. These are then evaluated using Fourier transforms. The resulting expression depends on the overlap integrals that can be evaluated with the greatest ease. They involve expressions for STO with different screening parameters that are known analytically. This work gives the overall expressions analytically in a compact form, based on Gegenbauer polynomials. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

5.
By use of Löwdin and Guseinov relations for the radial and angular part of two-center overlap integrals, respectively, the computer calculations of overlap integrals over Slater type orbitals (STOs) in molecular coordinate system are performed. The results of calculations are valid for arbitrary principal quantum numbers, screening constants and location of STOs. Excellent agreement with benchmark results and stability of the technique are demonstrated.  相似文献   

6.
Using expansion formulas for the charge‐density over Slater‐type orbitals (STOs) obtained by the one of authors [I. I. Guseinov, J Mol Struct (Theochem) 1997, 417, 117] the multicenter molecular integrals with an arbitrary multielectron operator are expressed in terms of the overlap integrals with the same screening parameters of STOs and the basic multielectron two‐center Coulomb or hybrid integrals with the same operator. In the special case of two‐electron electron‐repulsion operator appearing in the Hartree–Fock–Roothaan (HFR) equations for molecules the new auxiliary functions are introduced by means of which basic two‐center Coulomb and hybrid integrals are expressed. Using recurrence relations for auxiliary functions the multicenter electron‐repulsion integrals are calculated for extremely large quantum numbers. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 117–125, 2001  相似文献   

7.
The multicenter charge‐density expansion coefficients [I. I. Guseinov, J Mol Struct (Theochem) 417 , 117 (1997)] appearing in the molecular integrals with an arbitrary multielectron operator were calculated for extremely large quantum numbers of Slater‐type orbitals (STOs). As an example, using computer programs written for these coefficients, with the help of single‐center expansion method, some of two‐electron two‐center Coulomb and four‐center exchange electron repulsion integrals of Hartree–Fock–Roothaan (HFR) equations for molecules were also calculated. Accuracy of the results is quite high for the quantum numbers, screening constants, and location of STOs. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 146–152, 2000  相似文献   

8.
The expansion formula has been presented for Slater‐type orbitals with noninteger principal quantum numbers (noninteger n‐STOs), which involves conventional STOs (integer n‐STOs) with the same center. By the use of this expansion formula, arbitrary multielectron multicenter molecular integrals over noninteger n‐STOs are expressed in terms of counterpart integrals over integer n‐STOs with a combined infinite series formula. The convergence of the method is tested for two‐center overlap, nuclear attraction, and two‐electron one‐center integrals, due to the scarcity of the literature, and fair uniform convergence and great numerical stability under wide changes in molecular parameters is achieved. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

9.
A general formula has been established for the expansion of the product of two normalized associated Legendre functions centered on the nuclei a and b. This formula has been utilized for the evaluation of two‐center overlap and nuclear attraction integrals over Slater‐type orbitals (STOs) with integer and noninteger principal quantum numbers. The formulas given in this study for the evaluation of two‐center overlap and nuclear attraction integrals show good rate of convergence and great numerical stability under wide range of quantum numbers, orbital exponents, and internuclear distances. © 2001 Wiley Periodicals, Inc. Int J Quantum Chem, 2001  相似文献   

10.
In this study, we shall suggest analytical expressions for two-center nuclear attraction integrals over STO’s with a one-center charge distribution by using Fourier transform method. The derivation is based on partial-fraction decompositions and Taylor expansions of rational functions. Analytical expressions obtained by this method are expressed in terms of Gegenbauer, and binomial coefficients and linear combinations of STO’s. Finally, it is relatively easy to express the Fourier integral representations of two-center nuclear attraction integrals with a one-center charge distribution mentioned above as finite and infinite of series of STO’s and irregular solid harmonics which may be considered to be limiting cases of STO’s.  相似文献   

11.
Two‐center overlap integrals over Slater type orbitals (STOs) have been expressed in terms of the well‐known Mulliken's integrals Bn(pt) using Rodrigues's formula for normalized associated Legendre functions. A computer program is written in Mathematica 4.0 for the evaluation of two‐center overlap integrals over STOs. Using this computer program, symbolic tables are presented for two‐center overlap integrals up to quantum numbers 1 ≤ n,n′ ≤ 3, 0 ≤ l,l′ ≤ 2, ?2 ≤ m,m′ ≤ 2. Numerical results of this work, for some quantum sets, have also been compared with prior literature and best agreement achieved with recent works of Barnett while some discrepancies were obtained with works of Öztekin et al. and Guseinov et al.  相似文献   

12.
By the use of exponential‐type functions (ETFs) the simpler formulas for the expansion of Slater‐type orbitals (STOs) in terms of STOs at a displaced center are derived. The expansion coefficients for translation of STOs are presented by a linear combination of overlap integrals. The final results are of a simple structure and are, therefore, especially useful for machine computations of arbitrary multielectron multicenter molecular integrals over STOs that arise in the Hartree–Fock–Roothaan approximation and also in the Hylleraas correlated wave function method for the determination of arbitrary multielectron properties of atoms and molecules. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 126–129, 2001  相似文献   

13.
Using addition theorems for interaction potentials and Slater type orbitals (STOs) obtained by the author, and the Cartesian expressions through the binomial coefficients for complex and real regular solid spherical harmonics (RSSH) and their derivatives presented in this study, the series expansion formulas for multicenter multielectron integrals of arbitrary Coulomb and Yukawa like central and noncentral interaction potentials and their first and second derivatives in Cartesian coordinates were established. These relations are useful for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids by Hartree–Fock–Roothaan and correlated theories. The formulas obtained are valid for arbitrary principal quantum numbers, screening constants and locations of STOs.  相似文献   

14.
Using the definition of STOs in terms of BTOs, we have presented analytical formula for two-center overlap integrals. The obtained formula contains generalized binomial coefficients and Mulliken integrals Ak and Bk. Taking into account the recent advances on the efficient calculation of Mulliken integrals (Harris, Int. J. Quantum Chem., 100 (2004) 142), we have obtained many more satisfactory results for two-center overlap integrals, for arbitrary quantum numbers, scaling parameters, and location of atomic orbitals.PACS No: 31.15.+qAMS Subject Classification: 81V55, 81–08  相似文献   

15.
An efficient method for computing overlap integral over Slater type orbitals based on the B Filter-Steinborn and Guseinov \({Q_{ns}^q}\) auxiliary functions is presented. The final results are expressed through the binomial coefficients with the help of which the overlap integrals can be evaluated efficiently and accurately. The results of calculation are in good agreement with those obtained by other method for arbitrary principal quantum numbers and different screening constants.  相似文献   

16.
The Gauss transform of Slater‐type orbitals is used to express several types of molecular integrals involving these functions in terms of simple auxiliary functions. After reviewing this transform and the way it can be combined with the shift operator technique, a master formula for overlap integrals is derived and used to obtain multipolar moments associated to fragments of two‐center distributions and overlaps of derivatives of Slater functions. Moreover, it is proved that integrals involving two‐center distributions and irregular harmonics placed at arbitrary points (which determine the electrostatic potential, field and field gradient, as well as higher order derivatives of the potential) can be expressed in terms of auxiliary functions of the same type as those appearing in the overlap. The recurrence relations and series expansions of these functions are thoroughly studied, and algorithms for their calculation are presented. The usefulness and efficiency of this procedure are tested by developing two independent codes: one for the derivatives of the overlap integrals with respect to the centers of the functions, and another for derivatives of the potential (electrostatic field, field gradient, and so forth) at arbitrary points. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

17.
18.
The simpler formulas are derived for the complete orthonormal sets of exponential- type orbitals, momentum space orbitals and hyperspherical harmonics and their expansion and one-range addition theorems. The continuum states are not properly included in these functions. The analytical formulas are also obtained for the overlap integrals over Ψα-ETOs, their extensions to momentum and four-dimensional spaces and STOs with the same screening constants using addition and expansion theorems derived in this paper. The complete orthonormal sets of functions and their expansion and one-range addition theorems obtained can be useful in the study of different quantum mechanical problems when the coordinate, momentum or four-dimensional spaces employed.  相似文献   

19.
20.
Using translation and rotation formulas for spherical harmonics the finite sums through the basic overlap integrals and spherical harmonics are derived for the arbitrary overlap integrals over Slater-type orbitals (STOs). The recurrence relations for the evaluation of basic overlap integrals have been established recently [Guseinov II, Mamedov BA (1999) J Mol Struct (THEOCHEM) 465:1]. By the use of the derived expressions the overlap integrals can be calculated most efficiently and accurately, especially for large quantum numbers of STOs. Received: 2 May 2000 / Accepted: 31 May 2000 / Published online: 11 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号