首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Peta White   《Journal of voice》1999,13(4):570-582
High-pitched productions present difficulties in formant frequency analysis due to wide harmonic spacing and poorly defined formants. As a consequence, there is little reliable data regarding children's spoken or sung vowel formants. Twenty-nine 11-year-old Swedish children were asked to produce 4 sustained spoken and sung vowels. In order to circumvent the problem of wide harmonic spacing, F1 and F2 measurements were taken from vowels produced with a sweeping F0. Experienced choir singers were selected as subjects in order to minimize the larynx height adjustments associated with pitch variation in less skilled subjects. Results showed significantly higher formant frequencies for speech than for singing. Formants were consistently higher in girls than in boys suggesting longer vocal tracts in these preadolescent boys. Furthermore, formant scaling demonstrated vowel dependent differences between boys and girls suggesting non-uniform differences in male and female vocal tract dimensions. These vowel-dependent sex differences were not consistent with adult data.  相似文献   

2.
Vowel equalization is a technique that can be used by singers to achieve a more balanced vocal resonance, or chiaroscuro, by balancing corresponding front and back vowels, which share approximate tongue heights, and also high and low vowels by means of a more neutral or centralized lingual posture. The goal of this single group study was to quantify acoustic changes in vowels after a brief training session in vowel equalization. Fifteen young adults with amateur singing experience sang a passage and sustained isolated vowels both before and after a 15-minute training session in vowel equalization. The first two formants of the target vowels /e, i, ɑ, o, u/ were measured from microphone recordings. An analysis of variance was used to test for changes in formant values after the training session. These formant values mostly changed in a manner reflective of a more central tongue posture. For the sustained vowels, all formant changes suggested a more neutral tongue position after the training session. The vowels in the singing passage mostly changed in the expected direction, with exceptions possibly attributable to coarticulation. The changes in the vowel formants indicated that even a brief training session can result in significant changes in vowel acoustics. Further work to explore the perceptual consequences of vowel equalization is warranted.  相似文献   

3.
The acoustic effects of the laryngeal cavity on the vocal tract resonance were investigated by using vocal tract area functions for the five Japanese vowels obtained from an adult male speaker. Transfer functions were examined with the laryngeal cavity eliminated from the whole vocal tract, volume velocity distribution patterns were calculated, and susceptance matching analysis was performed between the laryngeal cavity and the vocal tract excluding the laryngeal cavity (vocal tract proper). It was revealed that the laryngeal cavity generates one of the formants of the vocal tract, which is the fourth in the present study. At this formant, the resonance of the laryngeal cavity (the 1/4 wavelength resonance) induces the open-tube resonance of the vocal tract proper (the 3/2 wavelength resonance). At the other formants, on the other hand, the vocal tract proper acts as a closed tube, because the laryngeal cavity has only a small contribution to generating these formants and the effective closed end of the whole vocal tract is the junction between the laryngeal cavity and the vocal tract proper.  相似文献   

4.
The identification of front vowels was studied in normal-hearing listeners using stimuli whose spectra had been altered to approximate the spectrum of vowels processed by auditory filters similar to those that might accompany sensorineural hearing loss. In the first experiment, front vowels were identified with greater than 95% accuracy when the first formant was specified in a normal manner and the higher frequency formants were represented by a broad, flat spectral plateau ranging from approximately 1600 to 3500 Hz. In the second experiment, the bandwidth of the first formant was systematically widened for stimuli with already flattened higher frequency formants. Normal vowel identification was preserved until the first formant was widened to six times its normal bandwidth. These results may account for the coexistence of abnormal vowel masking patterns (indicating flattened auditory spectra) and normal vowel recognition.  相似文献   

5.
During voice evaluation and treatment it is customary for clinicians to elicit samples of the vowel /a/ from clients using various elicitation techniques. The purpose of this study was to compare the effects of four commonly used stimulation tasks on the laryngeal mechanism. Eleven female singing students, studying at a university music school, served as subjects for the study. The subjects phonated the vowel /a/ using 4 vocal stimulation techniques: yawn-sigh, gentle onset, focus, and the use of the voiceless fricative. Videoendoscopic and acoustic evaluations of their productions were done. Results show that, in the first 100 ms following the end of the formant transition, these techniques affected voice differently. The fundamental frequency was found to be highest in the yawn-sigh condition, whereas the maximum frequency perturbation was obtained for the voiceless fricative condition. Planned comparisons were made by comparing the data across 2 dimensions: (1) vowels elicited with voiced contexts versus those elicited with voiceless consonantal contexts and (2) vowels elicited with obstruent versus vowels elicited with nonobstruent consonantal contexts. Some changes in acoustic parameters brought about by these stimulation techniques may be explained on the basis of coarticulatory effects of the consonantal context.  相似文献   

6.
《Journal of voice》2020,34(3):490.e7-490.e10
Cochlear implants (CIs) provide access to auditory information that can affect vocal control. For example, previous research shows that, when producing a sustained vowel, CI users will alter the pitch of their voice when the feedback of their own voice is perceived to shift. Although these results can be informative as to how perception and production are linked for CI users, the artificial nature of the task raises questions as to the applicability of the results to real-world vocal productions. To examine how vocal control, when producing sustained vowels, relates to vocal control for more ecologically valid tasks, 10 CI users’ vocal control was measured across two tasks: (1) sustained vowel production, and (2) singing. The results found that vocal control, as measured by the variability of the participants’ fundamental frequency, was significantly correlated when producing sustained vowels and when singing, although variability was significantly greater when singing. This suggests that, despite the artificial nature of sustained vowel production, vocal control on such tasks is related to vocal control for more ecologically valid tasks. However, the results also suggest that vocal control may be overestimated with sustained vowel production tasks.  相似文献   

7.
Research on the perception of vowels in the last several years has given rise to new conceptions of vowels as articulatory, acoustic, and perceptual events. Starting from a "simple" target model in which vowels were characterized articulatorily as static vocal tract shapes and acoustically as points in a first and second formant (F1/F2) vowel space, this paper briefly traces the evolution of vowel theory in the 1970s and 1980s in two directions. (1) Elaborated target models represent vowels as target zones in perceptual spaces whose dimensions are specified as formant ratios. These models have been developed primarily to account for perceivers' solution of the "speaker normalization" problem. (2) Dynamic specification models emphasize the importance of formant trajectory patterns in specifying vowel identity. These models deal primarily with the problem of "target undershoot" associated with the coarticulation of vowels with consonants in natural speech and with the issue of "vowel-inherent spectral change" or diphthongization of English vowels. Perceptual studies are summarized that motivate these theoretical developments.  相似文献   

8.
Four multiple-channel cochlear implant patients were tested with synthesized versions of the words "hid, head, had, hud, hod, hood" containing 1, 2, or 3 formants, and with a natural 2-formant version of the same words. The formant frequencies were encoded in terms of the positions of electrical stimulation in the cochlea. Loudness, duration, and fundamental frequency were kept fixed within the synthetic stimulus sets. The average recognition scores were 47%, 61%, 62%, and 79% for the synthesized 1-, 2-, and 3-format vowels and the natural vowels, respectively. These scores showed that the place coding of the first and second formant frequencies accounted for a large part of the vowel recognition of cochlear implant patients using these coding schemes. The recognition of the natural stimuli was significantly higher than recognition of the synthetic stimuli, indicating that extra cues such as loudness, duration, and fundamental frequency contributed to recognition of the spoken words.  相似文献   

9.
Simultaneous tracking of the vertical laryngeal position in various phonatory tasks was performed for 2 subjects (one male, one female) using dual-channel electroglottography (EGG) and videofluorography (videofluoroscopy). The tasks included phonation on [a:] with voluntary repeated (1) heightening and (2) lowering of the laryngeal position; alternation between [a:] and phonation on (3) [b], (4) [m], and (5) the voiced bilabial fricative [beta:]; and (6) production of the corner vowels [a, i, u]. EGG and videofluorography agreed about the direction of changes in the vertical laryngeal position in most cases. Most disagreements were found in the amount of changes. Reasons for the discrepancies, including, for example, changes in the resting position of the larynx and anteroposterior movements of the cartilages, are discussed. It can be concluded that dual-channel EGG is a valuable clinical and pedagogical tool for the analysis of the vertical displacement of larynx in well-specified phonatory tasks. The method should act most reliably on separately phonated vowels. Its applicability for studying laryngeal biomechanics more wholistically, however, is limited.  相似文献   

10.
Level and Center Frequency of the Singer''s Formant   总被引:2,自引:0,他引:2  
Johan Sundberg   《Journal of voice》2001,15(2):176-186
The "singer's formant" is a prominent spectrum envelope peak near 3 kHz, typically found in voiced sounds produced by classical operatic singers. According to previous research, it is mainly a resonatory phenomenon produced by a clustering of formants 3, 4, and 5. Its level relative to the first formant peak varies depending on vowel, vocal loudness, and other factors. Its dependence on vowel formant frequencies is examined. Applying the acoustic theory of voice production, the level difference between the first and third formant is calulated for some standard vowels. The difference between observed and calculated levels is determined for various voices. It is found to vary considerably more between vowels sung by professional singers than by untrained voices. The center frequency of the singer's formant as determined from long-term spectrum analysis of commercial recordings is found to increase slightly with the pitch range of the voice classification.  相似文献   

11.

Background  

The cortical activity underlying the perception of vowel identity has typically been addressed by manipulating the first and second formant frequency (F1 & F2) of the speech stimuli. These two values, originating from articulation, are already sufficient for the phonetic characterization of vowel category. In the present study, we investigated how the spectral cues caused by articulation are reflected in cortical speech processing when combined with phonation, the other major part of speech production manifested as the fundamental frequency (F0) and its harmonic integer multiples. To study the combined effects of articulation and phonation we presented vowels with either high (/a/) or low (/u/) formant frequencies which were driven by three different types of excitation: a natural periodic pulseform reflecting the vibration of the vocal folds, an aperiodic noise excitation, or a tonal waveform. The auditory N1m response was recorded with whole-head magnetoencephalography (MEG) from ten human subjects in order to resolve whether brain events reflecting articulation and phonation are specific to the left or right hemisphere of the human brain.  相似文献   

12.
The voiced bilabial fricative /β:/ has been used as a vocal exercise. The present study investigated the effects of the exercise on voice production and voice source. This study compared vowel phonation on the syllable /a:p/ with the production of the exercise and vowel phonation before and immediately after the exercise. The methods were (a) dual-channel electroglottography, from which the vertical laryngeal position was derived, (b) electromyography using surface electrodes, and (c) inverse filtering of the acoustic signal to obtain an estimate of the voice source. In the production of /β:/ as compared with vowel phonation in most of the cases, the vertical laryngeal position seemed to be higher, the muscular activity of the larynx lower, and the slope of the voice source spectrum steeper. In vowel phonation after the exercise, the muscular activity seemed to be lower in most cases, although the voice source remained unchanged. This seems to indicate improved vocal economy.  相似文献   

13.
A stratified random sample of 20 males and 20 females matched for physiologic factors and cultural-linguistic markers was examined to determine differences in formant frequencies during prolongation of three vowels: [a], [i], and [u]. The ethnic and gender breakdown included four sets of 5 male and 5 female subjects comprised of Caucasian and African American speakers of Standard American English, native Hindi Indian speakers, and native Mandarin Chinese speakers. Acoustic measures were analyzed using the Computerized Speech Lab (4300B) from which formant histories were extracted from a 200-ms sample of each vowel token to obtain first formant (F1), second formant (F2), and third formant (F3) frequencies. Significant group differences for the main effect of culture and race were found. For the main effect gender, sexual dimorphism in vowel formants was evidenced for all cultures and races across all three vowels. The acoustic differences found are attributed to cultural-linguistic factors.  相似文献   

14.
Acoustic effects of the time-varying glottal area due to vocal fold vibration on the laryngeal cavity resonance were investigated based on vocal tract area functions and acoustic analysis. The laryngeal cavity consists of the vestibular and ventricular parts of the larynx, and gives rise to a regional acoustic resonance within the vocal tract, with this resonance imparting an extra formant to the vocal tract resonance pattern. Vocal tract transfer functions of the five Japanese vowels uttered by three male subjects were calculated under open- and closed-glottis conditions. The results revealed that the resonance appears at the frequency region from 3.0 to 3.7 kHz when the glottis is closed and disappears when it is open. Real spectra estimated from open- and closed-glottis periods of vowel sounds also showed the on-off pattern of the resonance within a pitch period. Furthermore, a time-domain acoustic analysis of vowels indicated that the resonance component could be observed as a pitch-synchronized rise-and-fall pattern of the bandpass amplitude. The cyclic nature of the resonance can be explained as the laryngeal cavity acting as a closed tube that generates the resonance during a closed-glottis period, but damps the resonance off during an open-glottis period.  相似文献   

15.
A quantitative perceptual model of human vowel recognition based upon psychoacoustic and speech perception data is described. At an intermediate auditory stage of processing, the specific bark difference level of the model represents the pattern of peripheral auditory excitation as the distance in critical bands (barks) between neighboring formants and between the fundamental frequency (F0) and first formant (F1). At a higher, phonetic stage of processing, represented by the critical bark difference level of the model, the transformed vowels may be dichotomously classified based on whether the difference between formants in each dimension falls within or exceeds the critical distance of 3 bark for the spectral center of gravity effect [Chistovich et al., Hear. Res. 1, 185-195 (1979)]. Vowel transformations and classifications correspond well to several major phonetic dimensions and features by which vowels are perceived and traditionally classified. The F1-F0 dimension represents vowel height, and high vowels have F1-F0 differences within 3 bark. The F3-F2 dimension corresponds to vowel place of articulation, and front vowels have F3-F2 differences of less than 3 bark. As an inherent, speaker-independent normalization procedure, the model provides excellent vowel clustering while it greatly reduces between-speaker variability. It offers robust normalization through feature classification because gross binary categorization allows for considerable acoustic variability. There was generally less formant and bark difference variability for closely spaced formants than for widely spaced formants. These findings agree with independently observed perceptual results and support Stevens' quantal theory of vowel production and perceptual constraints on production predicted from the critical bark difference level of the model.  相似文献   

16.
There is extensive evidence that in the same phonetic environment the voice fundamental frequency (Fo) of vowels varies directly with vowel "height." This Fo difference between vowels could be caused by acoustic interaction between the first vowel formant and the vibrating vocal folds. Since higher vowels have lower first formants than low vowels the acoustic interaction should be greatest for high vowels whose first formant frequencies are closer in frequency to Fo. Ten speakers were used to see if acoustic interaction could cause the Fo differences. The consonant [m] was recorded in the utterances [umu] and [ama]. Although the formant structure of [m] in [umu] and [ama] should not differ significantly, the Fo of each [m] allophone was significantly different. However, the Fo of each [m] allophone did not differ significantly from the Fo of the following vowel. These results did not support acoustic interaction. However, it is quite reasonable to conclude that the Fo variation of [m] was caused by coarticulatory anticipation of the tongue and jaw for the following vowel. Another experiment is offered in order to help explain the physical causes of intrinsic vowel Fo. In this experiment Fo lowering was found at the beginning of vowels following Arabic pharyngeal approximants. This finding indicates that the Fo of pharyngeal constricting vowels, e.g., [ae] and [a], might be lowered as a result of similar articulary movements, viz. tongue compression and active pharyngeal constriction.  相似文献   

17.
The relation between the spatial configuration of the vocal tract as determined by magnetic resonance imaging (MRI) and the acoustical signal produced was investigated. A male subject carried out a set of phonatory tasks, comprising the utterance of the sustained vowels /i/ and /a/, each in a single articulation, and the vowel /epsilon/ with his larynx positioned variously on a vertical axis. Two- and three-dimensional measurements of the vocal tract were performed. The results of these measurements were used to calculate resonance frequencies, according to predictions from acoustical theory. Finally, calculated frequencies were compared with actually measured resonance frequencies in the audio signal. We found a strong relation between the acoustical signal produced and the spatial configuration for the first resonance frequencies of the articulations of the vowel /epsilon/, and first two resonance frequencies of the vowels /a/ and /i/. The capability to determine accurately vocal tract dimensions is a major advantage of this imaging technique.  相似文献   

18.
This study examines cross-linguistic variation in the location of shared vowels in the vowel space across five languages (Cantonese, American English, Greek, Japanese, and Korean) and three age groups (2-year-olds, 5-year-olds, and adults). The vowels /a/, /i/, and /u/ were elicited in familiar words using a word repetition task. The productions of target words were recorded and transcribed by native speakers of each language. For correctly produced vowels, first and second formant frequencies were measured. In order to remove the effect of vocal tract size on these measurements, a normalization approach that calculates distance and angular displacement from the speaker centroid was adopted. Language-specific differences in the location of shared vowels in the formant values as well as the shape of the vowel spaces were observed for both adults and children.  相似文献   

19.
Responses of large populations of auditory-nerve fibers to synthesized steady-state vowels were recorded in anesthetized cats. Driven discharge rate to vowels, normalized by dividing by saturation rate (estimated from the driven rate to CF tones 50 dB above threshold), was plotted versus fiber CF for a number of vowel levels. For the vowels /I/ and /e/, such rate profiles showed a peak in the region of the first formant and another in the region of the second and third formants, for sound levels below about 70 dB SPL. For /a/ at levels below about 40 dB SPL there are peaks in the region of the first and second formants. At higher levels these peaks disappear for all the vowels because of a combination of rate saturation and two-tone suppression. This must be qualified by saying that rate profiles plotted separately for units with spontaneous rates less than one spike per second may retain peaks at higher levels. Rate versus level functions for units with CFs above the first formant can saturate at rates less than the saturation rate to CF to-es or they can be nonmonotonic; these effects are most likely produced by the same mechanism as that involved in two-tone suppression.  相似文献   

20.
Auditory feedback influences human speech production, as demonstrated by studies using rapid pitch and loudness changes. Feedback has also been investigated using the gradual manipulation of formants in adaptation studies with whispered speech. In the work reported here, the first formant of steady-state isolated vowels was unexpectedly altered within trials for voiced speech. This was achieved using a real-time formant tracking and filtering system developed for this purpose. The first formant of vowel /epsilon/ was manipulated 100% toward either /ae/ or /I/, and participants responded by altering their production with average Fl compensation as large as 16.3% and 10.6% of the applied formant shift, respectively. Compensation was estimated to begin <460 ms after stimulus onset. The rapid formant compensations found here suggest that auditory feedback control is similar for both F0 and formants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号