首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanomaterials for rechargeable lithium batteries   总被引:1,自引:0,他引:1  
Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries.  相似文献   

2.
An overview is given of intercalation materials for both the negative and the positive electrodes of lithium batteries, including the results of our own research. As well as lithium metal as a negative electrode, we consider insertion materials based on aluminium alloys. In the case of the positive electrode metal-oxides based on manganese, nickel and cobalt are discussed. Received: 27 May 1997 / Accepted: 30 July 1997  相似文献   

3.
Lithium-ion batteries(LIBs) are presently dominant mobile power sources due to their high energy density, long lifespan, and low self-discharging rates. The safety of LIBs has been concerned all the time and become the main problem restricting the development of high energy density LIBs. As a significant part of LIBs, the properties of separators have a significant effect on the capacity and performances of batteries and play an important role in the safety of LIBs. In recent years, researchers devoted themselves to the development of various multi-functional safe separators from different views of methods, materials, and practical requirements. In this review, we mainly focus on the recent progress in the development of high-safety separators with high thermal stability, good lithium dendritic resistance, high mechanical strength and novel multifunction for high-safety LIBs and have in-depth discussions regarding the separator's significant contribution to enhance the safety and performances of the batteries. Furthermore, the future directions and challenges of separators for the next-generation high-safety and high energy density rechargeable lithium batteries are also provided.  相似文献   

4.
Extensive studies were carried out to apply composite materials composed of polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) to develop cathode materials which exhibit high energy densities. Previous results have established that composites of PAn and DMcT which are coated onto copper substrates exhibit greatly enhanced charge and discharge performance. It is shown that composite materials composed of DMcT, PAn, and Cu ion have the ability to be reversibly charged and discharged at ca. 260 A h per kg-cathode (ca. 830 W h per kg-cathode) for more than 80 cycles. These two results are explored in general in this contribution via investigation of the electron transfer reactions between the components using UV/Vis and investigation of the copper substrate/DMcT chemistry using electrochemical quartz crystal microbalance and phase modulated interferometric microscopy.  相似文献   

5.
In this review, we describe briefly the historical development of aqueous rechargeable lithium batteries, the advantages and challenges associated with the use of aqueous electrolytes in lithium rechargeable battery with an emphasis on the electrochemical performance of various electrode materials. The following materials have been studied as cathode materials: LiMn2O4, MnO2, LiNiO2, LiCoO2, LiMnPO4, LiFePO4, and anatase TiO2. Addition of certain additives like TiS2, TiB2, CeO2, etc. is found to increase the performance of MnO2 cathode. The following materials have been studied as anode materials: VO2 (B), LiV3O8, LiV2O5, LiTi2(PO4)3, TiP2O3, and very recently conducting polymer, polypyrrole (PPy). The cell PPy/LiCoO2, constructed using polypyrrole as anode delivers an average voltage of 0.86?V with a discharge capacity of 47.7?mA?h?g?1. It retains the capacity for first 120 cycles. The cell, LiTi2(PO4)3/1?M Li2SO4/LiMn2O4, delivers a capacity of 40?mA?h?g?1 and specific energy of 60?mW?h?g?1 with an output voltage of 1.5?V over 200 charge?Cdischarge cycles. An aqueous lithium cell constructed using MWCNTs/LiMn2O4 as cathode material is found to exhibit more than 1,000 cycles with good rate capability.  相似文献   

6.
Ion‐conducting block copolymers (BCPs) have attracted significant interest as conducting materials in solid‐state lithium batteries. BCP self‐assembly offers promise for designing ordered materials with nanoscale domains. Such nanostructures provide a facile method for introducing sufficient mechanical stability into polymer electrolyte membranes, while maintaining the ionic conductivity at levels similar to corresponding solvent‐free homopolymer electrolytes. This ability to simultaneously control conductivity and mechanical integrity provides opportunities for the fabrication of sturdy, yet easily processable, solid‐state lithium batteries. In this review, we first introduce several fundamental studies of ion conduction in homopolymers for the understanding of ion transport in the conducting domain of BCP systems. Then, we summarize recent experimental studies of BCP electrolytes with respect to the effects of salt‐doping and morphology on ionic conductivity. Finally, we present some remaining challenges for BCP electrolytes and highlight several important areas for future research. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1–16  相似文献   

7.
We demonstrate for the first time that by simply substituting ether-based electrolyte (1.0 M NaCF3SO3 in diglyme) for the commonly used carbonate-based electrolyte, the cyclability of FeS2 towards sodium storage can be significantly improved. A sodiation capacity over 600 mAh/g and a discharge energy density higher than 750 Wh/kg are obtained for FeS2 at 20 mA/g. When tested at 60 mA/g, FeS2 presents a sodiation capacity of 530 mAh/g and retains 450 mAh/g after 100 cycles, much better than the cycling performance of Na/FeS2 tested in carbonate-based electrolyte.  相似文献   

8.
Single-wall carbon nanotubes (SWNTs) reinforced NiO fibers with diameter smaller than 50 nm have successfully been prepared by electrospinning method combined with calcination. The SWNTs homogeneously distributed in the NiO fibers were characterized by high resolved transmission electron microscopy, selected area electron diffraction, and Raman spectroscopy. Charge and discharge data showed that 3D network structures of NiO–SWNTs fibers exhibited a relatively higher reversible capacity and lower capacity loss than that of NiO at the charge and discharge current density of 2C, and its discharge capacity was about 337 mAh/g after 20 cycles. Our results demonstrated that the SWNTs reinforced fibers had a better cycling performance at large charge and discharge current densities.  相似文献   

9.
Functionalized molecular sieve SBA-15 with trimethylchlorosilane was used as an inorganic filler in a poly(ethyleneoxide) (PEO) polymer matrix to synthesize a composite solid-state polymer electrolyte (CSPE) using LiClO4 as the doping salts, which is designated to be used for rechargeable lithium batteries. The methyl group-functionalized SBA-15 (fSBA-15) powder possesses more hydrophobic characters than SBA-15, which improves the miscibility between the fSBA-15 filler and the PEO matrix. The interaction between the fSBA-15 and PEO polymer matrix was investigated by scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. Linear sweep voltammetry and electrochemical impedance spectroscopy were employed to study the electrochemical stability windows, ionic conductivity, and interfacial stability of the CSPE. The temperature dependence of the change of the PEO polymer matrix in the CSPE from crystallization to amorphous phase was surveyed, for the first time, at different temperature by Fourier transform infrared emission spectroscopy. It has demonstrated that the addition of the fSBA-15 filler has improved significantly the electrochemical compatibility of the CSPE with a lithium metal electrode and enhanced effectively the ion conductivity of the CSPE. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24th, 2007.  相似文献   

10.
An ever first attempt has been made to investigate the anode performance characteristics of zinc tetrathiomolybdate. The poor crystallined zinc tetrathiomolybdate was prepared by precipitation method from Na2MoO4, ZnSO4·7H2O, and CH3CSNH2 as starting materials. Galvanostatic data in the voltage range of 0.01–2.0 V up to 20 cycles at a rate of 100 mA g−1 revealed that the material gave high reversible capacities and good performance.  相似文献   

11.
A functionalized graphene sheet-sulfur (FGSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of functionalized graphene sheets/stacks (FGS) and a layer of sulfur nanoparticles creating a three-dimensional sandwich-type architecture. This unique FGSS nanoscale layered composite has a high loading (70 wt%) of active material (S), a high tap density of ~0.92 g cm(-3), and a reversible capacity of ~505 mAh g(-1) (~464 mAh cm(-3)) at a current density of 1680 mA g(-1) (1C). When coated with a thin layer of cation exchange Nafion film, the migration of dissolved polysulfide anions from the FGSS nanocomposite was effectively reduced, leading to a good cycling stability of 75% capacity retention over 100 cycles. This sandwich-structured composite conceptually provides a new strategy for designing electrodes in energy storage applications.  相似文献   

12.
13.
This paper presents an overview of the various types of lithium salts used to conduct Li(+) ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato)borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated.  相似文献   

14.
A dimethyl sulfoxide (DMSO) based electrolyte is first proposed for rechargeable lithium-O(2) (Li-O(2)) batteries. Superior battery performances, including high discharge capacity and low charge potential, are successfully obtained.  相似文献   

15.
Fe/Si multi-layer thin films were prepared by alternate deposition using an electron-beam evaporation method. Electrochemical results through galvanostatic charge–discharge experiments are presented. It appears that the volumetric expansion of silicon during cycling can be effectively suppressed by forming a Fe layer between Si layers. The electrochemical characteristics of Fe/Si multi-layer film electrode can be controlled by the thickness, and number of stacked Si layers, and post-annealing.  相似文献   

16.
A novel all-solid-state thin-film lithium battery has been fabricated by spin coating V2O5 and LiClO4-SiO2 thin films on a stainless steel substrate. The LiClO4-SiO2 electrolyte has been synthesized using a new sol-gel route and it has been characterized by electrochemical impedance spectroscopy. The Li+ ion conductivity of the spin-coated thin film thus measured is in the order of 10–6 S/cm, at 25 °C, which is sufficient for electrolytes in such thin-film batteries. The battery shows a typical discharge capacity of about 150 μAh/mg and satisfactory cathodic efficiency and cycle-life performance. Electronic Publication  相似文献   

17.
The present study reports superior electrochemical performance with capacity doubled for organic positive electrodes based on a small redox-active molecule when using the Lithium Metal Polymer (LMP) technology. Particularly, the simple use of the regular solid polymer electrolyte currently employed in commercial LMP cells allows obtaining for the first time an efficient two-electron cycling of tetramethoxy-p-benzoquinone with high-rate capability at temperatures as high as 100 °C. With no optimization, the restored capacity represents 80% of the theoretical value (190 mAh/g) after 20 cycles operated at a C rate. On the contrary, when cycled in conventional carbonate-based electrolytes, this quinone compound exhibits quite poor electrochemical features such as a very limited depth of discharge (~ 50% of the theoretical capacity in the first cycle) followed by rapid capacity decay. After cycling, preliminary post-mortem characterizations did not evidence any obvious degradation in the cell. Although the adverse effect of the diffusion of the active material is not fully inhibited, the coulombic efficiency is close to 100% while the Li/electrolyte interface appears stable.  相似文献   

18.
We report a new type of separator film for application in rechargeable lithium and lithium-ion batteries. The films are made of mainly alkaline calcium carbonate (CaCO3) and a small amount of polymer binder. Owing to porosity and capillarity, the composite films show excellent wettability with non-aqueous liquid electrolytes. Typically, the composite films composed of CaCO3 and Teflon and wetted with 1 M LiPF6 dissolved in a solvent mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (30:70 wt%) exhibit an ionic conductivity as high as 2.5–4 mS/cm at 20 °C, in a comparable range with that (3.4 mS/cm) of the commercial Celgard membrane. In the batteries, the composite film not only serves as a physical separator but also neutralizes acidic products, such as HF formed by LiPF6 hydrolysis, as well as those formed by solvent oxidative decomposition. A Li/LiMn2O4 test cell was employed to examine the electrochemical compatibility of the composite film. We observed that the composite film cell showed an improved cycling performance since the alkaline CaCO3 neutralizes the acidic products, which otherwise promote dissolution of the electrode active materials. More importantly, the composite film cell displayed a superior performance on high-rate cycling, which was probably the result of the less resistive interface formed between the electrode and the composite film.  相似文献   

19.
Development of Li2S–P2S5-based glass-ceramic electrolytes is reviewed. Superionic crystals of Li7P3S11 and Li3.25P0.95S4 were precipitated from the Li2S–P2S5 glasses at the selected compositions. These high temperature or metastable phases enhanced conductivity of glass ceramics up to over 10−3 S cm−1 at room temperature. The original (or mother) glass electrolytes itself showed somewhat lower conductivity of 10−4 S cm−1 and have important role as a precursor for obtaining the superionic crystals, which were not synthesized by a conventional solid-state reaction. The substitution of P2O5 for P2S5 at the composition 70Li2S·30P2S5 (mol%) improved both conductivity and electrochemical stability of glass-ceramic electrolytes. The all-solid-state In/LiCoO2 cell using the 70Li2S·27P2S5·3P2O5 (mol%) glass-ceramic electrolyte showed initial capacity of 105 mAh g−1 (gram of LiCoO2) at the current density of 0.13 mA cm−2 and exhibited higher electrochemical performance than that using the 70Li2S·30P2S5 glass-ceramic electrolyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号