首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A simple and novel electrogenerated chemiluminescence (ECL) method for the determination of sulfite has been developed based on the energy transfer ECL process. It was found that a weak ECL signal of sulfite was electrochemically generated on a platinum electrode in neutral aqueous solution. The signal was strongly enhanced by rhodamine B as an energy receptor and further enhanced by the neutral surfactant Tween 80. In 0.10M phosphate buffer solution (pH=7.5) containing 2.0×10–6gmL–1 rhodamine B and 0.4% (v/v) Tween 80, the ECL response to the concentration of sulfite at a potential of 0.82V was linear over a range of 1.0×10–7gmL–1 to 8.0×10–6gmL–1, and the detection limit was 5×10–8gmL–1. The relative standard deviation (n=11, 1.0×10–6gmL–1) was 3.8%. The proposed method has been successfully applied to the determination of sulfite in pharmaceutical injections and white sugar samples.  相似文献   

2.
The kinetics of formation and dissociation reactions of [Ru(CN)5L]3– with a series of heterocyclic ligands were studied in aqueous media. In this presence of an excess of heterocycle, the observed second order rate constants were calculated from the kobs versus [ligand] plot at =0.100m NaClO4. Activation parameters for the formation reactions (H=28±7kJmol–1 and S=140±35JK–1mol–1) are comparable for all systems, indicating a common mechanism. The kinetics of exchange of coordinated heterocycles for 1,3,5-triazine yielded a rate saturation typical of a limiting dissociative mechanism. Activation parameters of the limiting first order specific rate of dissociation reactions were H=85±7kJmol–1 and S=18±4JK–1mol–1. Equilibrium constants were calculated from the second order rates of formation and pseudo-first order rates of dissociation reaction.  相似文献   

3.
2,3-Dihydroxypyridine loaded (via –N=N–linker) Amberlite XAD-2 (AXAD-2-DHP) was prepared and characterized by elemental analyses, TGA and FT-IR spectra. It (1g packed in a column of 1cm diameter; surface area 135.5m2g–1) was found to be an effective solid phase sorbent for enriching Zn2+, Mn2+, Ni2+, Pb2+, Cd2+, Cu2+, Fe3+ and Co2+ at pH 3.5 to 7.0 using flow rates between 1.0–5.0mLmin–1. For desorption (recovery 97.0–99.8%) of the metal ions, 8 to 10mL of 2.0molL–1 HCl or 1.5molL–1 HNO3 at a flow rate of between 2.0 and 4.0mLmin–1 were found most suitable. The t1/2 (time for 50% sorption) is between 2 and 10min when a 50mL solution (containing a total amount of metal of 2mg) was equilibrated with 0.5g of resin. Sorption of all metal ions except Pb2+ follows the Langmuir model, whereas for Pb the data fits with the Freundlich model. The sorption capacity is between 60.7 (for Cd) and 406.7 (for Cu) µmolg–1. The resin can withstand an acid concentration of 6molL–1 and can be reused for thirty cycles of sorption–desorption. The preconcentration factor varies between 100 and 300. For Cd, Ni and Cu the sorption capacity of 2,3-dihydroxypyridine loaded cellulose is lower than that of the present resin. The tolerance limits of electrolytes, humic acid, complexing agents, Ca2+ and Mg2+ in the enrichment of all metal ions are reported. The limits of detection are 3.88, 5.37, 8.72, 13.88, 4.71, 1.24, 0.59 and 0.30µgL–1 for Zn2+, Mn2+, Ni2+, Pb2+, Cd2+, Cu2+, Fe3+ and Co2+, respectively. The calibration curves for flame AAS determination were linear in the ranges 0.018–1.0, 0.067–5.0, 0.2–5.0, 0.9–20, 0.028–2.0, 0.077–5.0, 0.19–10 and 0.1–3.5µgmL–1, respectively. All the eight metal ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples have been quantitatively enriched with Amberlite XAD-2-DHP and determined by flame atomic absorption spectrometry.  相似文献   

4.
A new method for the simultaneous determination of heavy metal ions in Chinese herbal medicine by microwave digestion and reversed-phase high-performance liquid chromatography (RP-HPLC) has been developed. The Chinese herbal medicine samples were digested by microwave digestion. Lead, cadmium, mercury, nickel, copper, zinc, and tin ions in the digested samples were pre-column derivatized with tetra-(4-chlorophenyl)-porphyrin (T4-CPP) to form the colored chelates which were then enriched by solid phase extraction with C18 cartridge and eluted from the cartridge with tetrahydrofuran (THF). The chelates were separated on a Waters Xterra RP18 column by gradient elution with methanol (containing 0.05molL–1 pyrrolidine-acetic acid buffer salt, pH=10.0) and THF (containing 0.05molL–1 pyrrolidine-acetic acid buffer salt, pH=10.0) as mobile phase at a flow rate of 0.5mLmin–1 and detected with a photodiode array detector in the range of 350–600nm. In the original samples the detection limits of lead, cadmium, mercury, nickel, copper, zinc and tin are 4ngL–1, 3ngL–1, 6ngL–1, 5ngL–1, 2ngL–1, 6ngL–1, and 4ngL–1, respectively. This method was applied to the determination of lead, cadmium, mercury, nickel, copper, zinc and tin in Chinese herbal medicine samples with good results.  相似文献   

5.
A microcolumn on-line preconcentration and separation system was developed for the flame atomic absorption spectrometric (FAAS) determination of trace levels of gold and palladium. The analytes were selectively adsorbed onto the microcolumn packed with 2-mercaptothiazole immobilized silica gel (MBTSG) in an acidity range of 0.1 to 6.0M HCl at a sampling flow rate of 4.0mLmin–1. The analytes adsorbed could be desorbed by a thiourea solution with a flow rate of 2.0mLmin–1. Most of the common coexisting metal ions at a concentration of 25.0mgmL–1 and anions at a concentration of 50.0mgmL–1 did not interfere with the preconcentration and determination of Au and Pd. The limits of detection (LOD), defined as three times the standard deviation of the blank (3), of Au and Pd are 10ngmL–1 and 26ngmL–1, respectively, with a preconcentration time of 60s. The relative standard deviation (RSD) is about 2.0% for 0.20µgmL–1 Au and 0.30µgmL–1 Pd. With a sample loading time of 30min, 6.7ngmL–1 Au and 10ngmL–1 Pd can be preconcentrated quantitatively. A geological sample, an anode slime and a secondary nickel alloy were successfully determined with the proposed method, and the results obtained showed good agreement with the certified values.Received December 23, 2002; accepted May 14, 2003 Published online August 8, 2003  相似文献   

6.
The fabrication and electrochemical characteristics of a penicillamine (PCA) self-assembled monolayer modified gold electrode were investigated. The self-assembled electrode shows obvious electrocatalytic activity for the oxidation of epinephrine (EP). In phosphate buffer (pH 7.73), a sensitive oxidation peak was observed at 0.190V with the PCA modified Au electrode. The peak current is proportional to the concentration of EP in the range of 2.0×10–56.0×10–4molL–1 and 5.0×10–6 2.0×10–4molL–1 for cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with the detection limits of 1.8×10–7 and 1.3×10–7molL–1, respectively. The possible reaction mechanism is also discussed. The PCA self-assembled monolayer modified gold electrode is highly stable and can be applied to the determination of EP in practical injection samples. Application is simple, rapid and produces accurate results.  相似文献   

7.
A sub-micrometer thin-layer DNA modified carbon fiber microcylinder electrode was prepared by electrodeposition of ct-DNA at 1.5V (vs. Ag/AgCl). The voltammetric behavior of dopamine (3-hydroxytyramine) was investigated at the modified electrode. It was found that the modified electrode exhibits a highly electrocatalytic activity toward dopamine oxidation. Differential pulse voltammetry was used for determination of dopamine in pH 7.4 phosphate buffer solution. A linear response of the peak current versus the concentration was found in the range of 4×10–6 to 10–4molL–1 at 10–4molL–1 AA (ascorbic acid) coexistence (R=0.9959) and the range of 6×10–5 to 10–3molL–1 at 10–3molL–1 AA (R=0.9960). The presence of a high concentration of ascorbic acid did not interfere with the determination. The proposed method exhibited good recovery and reproducibility. This method can be applied to the detection of DA in real samples.  相似文献   

8.
A sensitive and selective solid phase spectrophotometric method for the determination of trace amounts of inorganic mercury is described. Hg2+ was sorbed on a silica gel-packed column as an Hg2+N,N-bis(2-mercaptophenyl)ethanediamide (H2L) complex. The Hg2+ complex was eluted from the column using 7mL of acetone. Various parameters including pH, column flow rate, and ligand concentration were optimized. The complex was found to obey Beers law from 2.3 to 73.7µgmL–1 within the optimum range when the preconcentration factor was two. The effective molar absorption coefficient at 523nm was 1.17×103Lmol–1cm–1 at 523nm. The concentration limits in Beers law dropped from 0.09 to 2.95µgmL–1 within the optimum range when the preconcentration factor was 50. The relative standard deviation at a concentration level of 5µgmL–1 Hg2+ (9 repetitive determinations) was 1.6%. The detection limits are 0.34µgmL–1 and 0.015µgmL–1 when the preconcentration factors are 2 and 50, respectively. The method has been used for routine determination of trace levels of Hg2+ in natural waters. The potential application of this method for the removal of Hg2+ from natural samples (sea water and lake water) spiked with 100ngmL–1 of Hg2+ was studied. In order to validate the proposed method, LGC 6156 (harbour sediment – extractable metals) was analysed by this method. The results proved that excellent extraction of Hg2+ from both natural water samples was obtained by solid phase extraction using N,N-bis(2-mercaptophenyl) ethanediamide.  相似文献   

9.
NMR imaging and spatially resolved diffusometry have been used to study the distribution of water within swollen cellophane and measure its diffusion coefficient. Water concentration and diffusion coefficient were found to be essentially constant across most of the film thickness. However, significantly slower diffusion was indicated for water near the film surface (D=0.5×10–9m2s–1) compared with water in the centre of the film (D=0.88×10–9m2s–1). This was also reflected in lower T 2 values at the edge of the film indicating water with more restricted motion. These observations were interpreted in terms of dense surface regions of cellulose (skin) over a more porous interior (core).  相似文献   

10.
The manganese-tetrasulfonatophthalo-cyanine (MnTSPc) catalyzed luminol-hydrogen peroxide chemiluminescence (CL) system can be quenched in the presence of nucleic acids. A new and highly sensitive CL quenching method for determining nucleic acids in aqueous solutions has been developed. Under optimum conditions, linear relationships were found between the quenched intensity of CL and the concentration of nucleic acids in the range 0.10–2.0µgmL–1 for calf thymus DNA and 0–1.6µgmL–1 for fish sperm DNA. The limits of detection were 14.8ngmL–1 for calf thymus DNA and 21.7ngmL–1 for fish sperm DNA. The relative standard deviation (RSD) of nine replicate measurements is 1.4% for 1.0µgmL–1 calf thymus DNA. The method was applied to the analysis of nucleic acids in synthetic samples and the results are satisfactory.Received December 2, 2002; accepted June 2, 2003 published online September 1, 2003  相似文献   

11.
Thallium in natural water samples was determined by electrothermal atomic absorption spectrometry after 1000-fold enrichment by mini solid-phase extraction from a 100-mL sample solution. A Tl-pyrrolidine-1-carbodithioate complex formed in a sample solution of pH 1.6 was extracted on fine particles of a cellulose nitrate resin dispersed in the sample solution. The cellulose nitrate resin was then collected on a membrane filter (25mmø) by filtration under suction using a glass funnel with an effective filtration area of 0.64cm2. As a result, a circular thin layer of the resin phase with a diameter of 9mm was obtained. Then the resin phase was carved out by an acrylate resin puncher with a 10-mmø hole to put it into a sample cup containing 100µL of 10mM HNO3 containing 0.5mM NaCl. The resin phase was suspended in the solution by ultrasonication. 1000-fold enrichment was thus attained within 15min, and the suspension was delivered to electrothermal atomic absorption spectrometry. The linear calibration graph was obtained in the range of 0–4ng of Tl in 100mL of a sample solution. The detection limit obtained by 3 method was 0.19ng. The proposed method was applied to the determination of Tl in natural water samples. The results showed the concentration of Tl in seawater was 12.1±1.8pgmL–1 for the calibration graph method and 12.6±1.4pgmL–1 for the standard addition method. A snowmelt sample contained 20.7±1.0pgmL–1 of Tl.  相似文献   

12.
A carbon black microelectrode modified by -MnO2 has been prepared. The electrocatalytical oxidation of ascorbic acid (AA) at this microelectrode was investigated. The 2nd-order linear scan voltammograms of AA are recorded from –0.5 to 0.5V (vs. SCE). The relationship between the oxidation peak current of AA and its concentration in the range of 1.0×10–64.0×10–3molL–1 is linear. The detection limit (3) was found to be 6.0×10–7molL–1. Also, the determination of AA in samples is evaluated, and the results are satisfactory.  相似文献   

13.
A flow-injection procedure for the determination of iron(III) in water is described. The procedure is based on the formation of an ion pair between the tetraphenylarsonium (Ph4As+) (TPA) or tetrabutylammonium (But4N+) (TBA) cations and the tetrathiocyanatoferrate(III) complex (TTF). This ion pair is extracted with chloroform, and the absorbance of the organic phase is measured at 503nm (for Ph4As+) or 475nm (for But4N+). Iron concentrations higher than 0.9×10–6molL–1 (50µgL–1) can be detected in the first case, with a relative standard deviation of 1.9% (n=12), a linear application rangeof between 1.34 and 54.0×10–6molL–1 (75–3015µgL–1), and a sampling frequency of 30h–1. For the ion pair with But4N+, the detection limit is 0.52×10–6molL–1 (29µgL–1), with a relative standard deviation of 1.6% and a linear application range between 0.73 and 54.0×10–6molL–1. Under the proposed working conditions, only Pd(IV), Cu(II) and Bi(III) interfere. With the application of the merging zones technique, considerable amounts of organic reagent can be saved. The TBA method was applied to the analysis of iron(III) in tap and industrial waste waters.  相似文献   

14.
A kinetic method is described for the microquantitative (microconcentration/microvolume) determination of rutin based on potentiometric monitoring of the concentration perturbations of the Bray-Liebhafsky (BL) oscillatory reaction being in a non-equilibrium stationary state close to a bifurcation point. The experiments are carried out in an open reactor. The response of the matrix system to perturbations by different concentrations of rutin ethanolic solutions is followed by a Pt-electrode. In the concentration range between 7.8×10–8moldm–3 and 9.1×10–6mol dm–3, we found a linear dependence of the maximal potential shift, Em, on the logarithm of the rutin concentrations. The unknown concentrations can be determined from the calibration curve up to an accuracy of ±5%. The detection limit is 3.6×10–8mol dm–3. The amount of required sample can be as small as 10µL.  相似文献   

15.
A photochemical chemiluminescence (CL) method for the determination of lomefloxacin (LFX) is proposed. LFX undergoes a photochemical reaction when irradiated with ultraviolet light, and a complex is formed when the photoproduct reacts with terbium(III), which can greatly enhance the CL of the Ce4+–Na2SO3 system. Under optimum experimental conditions, the linear range is between 9.0×10–10 and 1.0×10–5M, and the detection limit is 2.2×10–10M. The relative standard deviation for the determination of 5.0×10–8M LFX was 3.0% (n=11). The method has been successfully applied to the determination of LFX in dosage form, serum samples and urine samples. The recoveries were 97.9–102.3% for serum and urine samples. The possible mechanism is presented.  相似文献   

16.
A single-wall carbon nanotubes (SWNT) film coated glassy carbon electrode (GCE) was fabricated for the direct determination of 4-nitrophenol (4-NP). The electrochemical behaviors of 4-NP at the SWNT-film coated GCE were examined. In 0.1M phosphate buffer with a pH of 5.0, 4-NP yields a very sensitive and well-defined reduction peak at the SWNT-modified GCE. It is found that the SWNT film exhibits obvious electrocatalytic activity towards the reduction of 4-NP since it not only increases the reduction peak current but also lowers the reduction overpotential. Based on this, an electrochemical method was proposed for the direct determination of 4-NP. The reduction peak current varies linearly with the concentration of 4-NP ranging from 1×10–8 to 5×10–6M, and the detection limit is 2.5×10–9M after 3min of open-circuit accumulation. The relative standard deviation at 2×10–7M 4-NP was about 6% (n=10), suggesting excellent reproducibility. This new method was successfully employed to determine 4-NP in several lake water samples.  相似文献   

17.
The interaction of indophenol blue (IPB) with proteins in aqueous solution has been studied by optical absorption and Rayleigh light scattering (RLS) spectroscopy. At pH 3.8, the weak RLS of IPB is enhanced by proteins. Based on this phenomenon, a novel method for the determination of proteins at nanogram levels using the RLS technique is developed. The method is simple, practical and sensitive. The linear range is 0.25–20.9µgmL–1 for BSA, and 0.25–17.6µgmL–1 for HSA. The detection limits (S/N=3) are 23ngmL–1 for BSA and 22ngmL–1 for HAS. The results for the determination of proteins in human serum samples are very close to those obtained by an established clinical method. There is very little interference from amino acids, metal ions or other coexisting compounds.  相似文献   

18.
A new method of SS-RTP for the determination of trace silver has been established. This method is based on the fact that Ag+, when activated by ,-bipyridyl (bipy) in a media of HAc–NaAc (pH=4.9), can catalyze the reaction of Rhodamine B (RhoB) oxidized by K2S2O8, thus causing the Solid Substrate Room-Temperature Phosphorescence (SS-RTP) of RhoB to be quenched. The activating efficiency of bipy is 6.7 times higher than that of o-phenanthroline (phen). The reduction of the phosphorescence intensity (Ip) of RhoB is directly proportional to the concentration of Ag+ ions in the range of 1.6016.0agspot–1 (0.40µLspot–1). The regression equation of the working curve can be expressed as Ip=18.78+5.100mAg+ (agspot–1) (r=0.9994, n=6), the detection limit is 0.28agspot–1. This rapid, accurate and sensitive method has been successfully applied to the determination of trace silver in tea and human hair samples, and the results agree well with the Atomic Absorption Spectroscopy (AAS) method. The mechanism of the catalyzing reaction is also discussed.  相似文献   

19.
A method for the determination of trace amounts of arsenic in food samples using flow injection analysis and atomic absorption spectrometry with hydride generation (FI-HG AAS) was developed. The parameters of the flow injection system and the hydride generation were optimized with respect to reagent concentrations, atomization temperature, injection volume, reaction coil length and carrier flow rate. The limits of detection and quantification were 0.34µgL–1 and 1.2µgL–:1, respectively, and the analytical curve is linear up to 30.0µgL–1 arsenic. The relative standard deviation for 12 replicates varies between 5% for 4.0µgL–1 As and 1.8% for 30.0µgL–1 As, with an injection frequency of up to 135h–1. Interferences from Ni(II), Cu(II), Fe(III), Cr(III), Mo(II), Bi(III), Se(IV), Se(VI), Sb(III) and Sb(V) could be masked with a mixture of ascorbic acid-KI in a 5.0molL–1 HCl solution. The accuracy of the proposed method was evaluated by using certified reference materials of biological samples, and the method was used to determine the content of arsenic in fish and coffee beans.  相似文献   

20.
Li  Wen-You  Miao  Kun  Wu  Hui-Ling  He  Xi-Wen  Liang  Hong 《Mikrochimica acta》2003,143(1):33-37
The reaction between quinaldine red (QR) and nucleic acids was studied. The free QR alone has no fluorescence in solution. However, it becomes fluorescent after binding to nucleic acids, giving maximum emission at 607nm with maximum excitation at 557nm. Maximum fluorescence intensity is produced in the pH range of 3.2–3.6. Based on the fluorescent reactions, a novel fluorometric method was developed for rapid determination of nucleic acids using QR as the fluorescent probe. Under optimal conditions, the calibration graphs were linear in the range of 0–30.0µgmL–1 for CT DNA and 0–20.0µgmL–1 for yeast RNA. The limits of detection were 38ngmL–1 for CT DNA and 142ngmL–1 for yeast RNA. Four synthetic samples were determined with satisfaction.Received December 20, 2002; accepted March 27, 2003 Published online August 8, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号