首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EPR and optical absorption measurements have been performed to detect the defects activated by X-rays in single crystals of zinconium dioxide, stabilized in the cubic phase by the addition of Y2O3 in two different concentrations (12 and 24 mol%). Production yield and thermal stability confirm the attribution of the 375 nm optical absorption band to the defect responsible for the EPR T-signal. Deviations from a random distribution of the stoichiometric oxygen vacancies are evidenced. These results agree with the existence of ordering processes in the vacancy system, as predicted by recent structural models.  相似文献   

2.
The electron-density functional method (in the gradient approximation) and the pseudopotential method are used to study the mechanism of ionic conductivity in the cubic phase of zirconia stabilized with magnesium or yttrium. The oxygen-ion migration in the stabilized zirconia is shown to be a two-stage process, which consists in the formation of active oxygen vacancies and in oxygen-ion jumps from one active vacancy to another. The total activation energy of these processes is calculated to be 1.0–1.5 eV, which agrees with experimental data.  相似文献   

3.
Impedance measurements are reported for a bicrystal and single crystals of yttrium-stabilized ZrO2 (YSZ) over the range from 100 to 107 Hz, and for temperatures from 200 to 500°C in air. In addition to the impedances introduced by the conduction process within the grains and by charge transfer process at the electrodes, the grain-boundary introduced an additional impedance which was observed as an additional arc when the impedance was plotted in the complex plane. These data and an examination by both optical and scanning electron microscopy reveal the grain boundary to be a gap between the adjacent crystals, with occasional bridges of YSZ. These results illustrate the potential of impedance spectroscopy for studying intercrystalline interfaces in solid conductors.  相似文献   

4.
Using the electron density functional method, it is shown that the oxygen sublattice of cubic zirconia is unstable with respect to random displacements of oxygen atoms, which results in general instability of bulk cubic zirconia at low temperatures. A comparison of the equilibrium atomic structures and total energies of stoichiometric ZrO2 nanoparticles about 1 nm in size shows that particles with cubic symmetry are more stable than those with rhombic (close-to-tetragonal) symmetry. The electronic structure of nanoparticles exhibits an energy gap at the Fermi level; however, this gap (depending on the symmetry and size of the particle) can be much narrower than the energy gap of the bulk material.  相似文献   

5.
The surface state of partially stabilized zirconia with nanoparticles of sizes 10–30 nm after temperature and pressure treatments was investigated by Fourier transform infrared spectroscopy, X-ray diffraction and small-angle X-ray scattering. It is shown that the synthesized nanoparticles are surface fractals and the fractal dimensions non-monotonically change with nanoparticles size change. The martensite tetragonal-to-monoclinic transition of the partially stabilized zirconia nanoparticles under hydrostatic pressure (100–1000 MPa) was investigated. It was shown that the character of the martensite transition in nanoparticles’ system depends on the pressure values. Three ranges of pressures were revealed. It was shown that the stability of martensite tetragonal–monoclinic transition decreases with the increase in size of the nanoparticles only for the pressures range of 300–500 MPa. Below 200 MPa, the character of the martensite transition is extreme and has a maximum for the particle size of 17 nm. In pressure range of 600–1000 MPa, the degree of martensite transition is dependent on the fractal dimension of the surface.  相似文献   

6.
The phase composition and morphology of the twin structure of the Y2O3-stabilized zirconia crystals (from 2.8 to 4.0 mol %) after the thermal treatment at 1600°C have been investigated by X-ray diffractometry and transmission electron microscopy. It is shown that as the concentration of the stabilizing Y2O3 impurity increases, the character of the twin structure changes, and the amount of the untransformed phase t′ increases. The dependence of the hardness and crack resistance of the crystals of partially stabilized zirconia on the Y2O3 concentration and the indenter orientation is investigated using the microindentation method. The sample with the lowest concentration of the stabilizing Y2O3 impurity turned out the most crack resistant. This can be explained by a high content of tetragonal phase t in it, which provides the transformation strengthening mechanism of the material, and by a more multilevel character of twinning.  相似文献   

7.
This paper focuses on the magnetic, structural and thermal properties of mechanically alloyed Y2O3/α-Fe2O3 mixed powders and investigates the effects of the mechanical milling and heat treatment on the synthesis of yttrium iron garnet from the primary materials. The morphological and structural studies were carried out by scanning electron microscope and X-ray diffraction, respectively. The thermal activities were measured by differential thermal analysis. The magnetic properties were studied by vibrating sample magnetometer. The results showed that high-energy milling does not lead to the garnet formation and even does not decrease the temperature of the garnet formation. Furthermore, the orthoferrite phase can be achieved slightly during the milling process (up to 96 h) and completely by the heat treatment at lower temperatures (850 °C).  相似文献   

8.
The time-resolved spectra and luminescence decays of cubic yttria-stabilized zirconia single crystals were investigated in the 100–300 K temperature range. At each temperature the time-resolved spectra are dominated by a yellow-orange broad band with a shoulder in the green region, and their shapes appear similar to those displayed in fluorescence. In addition, the shapes remain almost independent of the delay times over the range between 0.04 and 0.4 ms after excitation. The luminescence decays can be satisfactorily described by the superposition of two exponential functions, as well as by two expressions commonly given for decays related to disorder. In the three cases, the temperature dependences of the time constants and the other parameters derived from these expressions are analyzed. The time constants can be accounted for by assuming a radiative decay from two metastable levels with a typical separation of 0.057±0.005 eV. Some correlations between the parameters from the luminescence-decay formulae are given. The results are in good agreement with luminescence due to radiative recombinations at donor F-type levels in which complexes formed by oxygen vacancies in a disordered sublattice are involved.  相似文献   

9.
Zirconia single crystals doped with 2.8, 3.2, 3.7, and 4.0 mol % of Y2O3 have been studied. The phase composition and structure have been studied by X-ray diffraction analysis and transmission electron microscopy. It has been established that all investigated samples has two ZrO2 tetragonal phases with tetragonality c/a = 1.006–1.007 and c/a = 1.014–1.015 independent of the stabilizing impurity content. The former phase is not transformed, whereas the latter is transformed into a monoclinic one. In all cases the samples have a developed twin structure. Twinning hierarchy is observed: there are first-, second-, third-order, etc., twins, each of them containing the next-order twins inside them. Elastic stress relaxation occurs by twinning rather than by generation of dislocations. The stabilizing impurity content affects the structure nonmonotonically; the minimum dimensions of the twin lamellas refer to the Y2O3 concentration of 3.2 mol %.  相似文献   

10.
The kinetics for the electrode reactions with oxygen and with NO and NO2 in the presence of oxygen has been studied for La0.8Sr0.2MnO3±δ-electrodes on stabilized zirconia (8 mol% Y2O3=YSZ) in the temperature range between 500°C and 900°C for oxygen partial pressures between 1 kPa and 20 kPa by means of electrochemical methods (impedance, I-U characteristics) and temperature programmed desorption (TPD). For oxygen reduction below 900°C a mechanism is proposed which describes the formation of peroxidic ions at the electrode surface and a subsequent rate-determining electron transfer at the three-phase-boundary. At temperatures below 650°C the electrode reaction between NO and NO2 is much faster than the oxygen reduction. The results for the NO2-reduction to NO can be explained by a two-step mechanism consisting of a fast one-electron transfer to adsorbed NO2 at the electrode surface and a subsequent rate-determining transfer of the second electron to NO2 at the three-phase-boundary. Paper presented at the 1st Euroconference on Solid State Ionics, Zakynthos, Greece, 11 – 18 Sept. 1994  相似文献   

11.
Control of very low oxygen partial pressures was performed in the range of 10−21-10−24 Pa at 750°C by pumping oxygen into the purified hydrogen stream with a stabilized zirconia cell. The oxygen partial pressures were monitored by a stabilized zirconia sensor. The stabilized zirconia oxygen sensor was calibrated by H2-CO2 gas buffer mixture in the range of oxygen pressure from 10−17 to 10−21 Pa, and oxygen partial pressures below 10−21 Pa were measured by extrapolating the calibration line to very low oxygen partial pressures. The lowest oxygen partial pressure controlled was 10−24 Pa at 750°C, which was limited by gas leaks in the system and also by the reduction of the ionic transference number in solid electrolyte used as the oxygen pump.  相似文献   

12.
To elucidate the conduction-blocking process observed in sintered electric ceramics, measurements have been carried out on a weld between two YSZ (Yttria-Stabilized Zirconia) single crystals and on YSZ-Al2O3 composites in addition to previous measurements on cracks generated at room temperature in YSZ single crystals. A fraction of the mobile oxide ions appears to be blocked at impermeable parts of the internal surfaces. The surfaces of voids (cracks, pores, and probably parts of the grain boundaries) can generate the same blocking effects as the surface of precipitated second phases.  相似文献   

13.
The polycrystalline Y3Fe5−xAlxO12 compounds with x=0.5, 1.0, 1.5 and 2.0 were prepared by the mechanochemical method. The samples were milled for 40 h in a high-energy planetary mill and then calcined at different temperatures from 1300 to 1100 °C. The minimum calcination temperature to get a single phase garnet decreases by increasing Al concentration. X-ray diffraction patterns reveal that the structures of nano-powders are bcc and the garnet phase has been obtained after calcining. Also, the lattice constant of the samples decreases by increasing Al concentration ,which is discussed based on the substitution of smaller aluminum ions instead of iron ions. The average crystallite sizes are in the range 24-35 nm using Scherrer's formula. The Curie temperature of single phase samples was found to decrease by increasing Al concentration, which can be discussed upon the reduction of magnetic interactions per magnetic ion. When more Al3+ is added, the magnetization is reduced because of the reduction of superexchange interactions in crystal lattice.  相似文献   

14.
Parameters determining the performance of the crystalline oxides zirconia (ZrO2) and hafnia (HfO2) as gate insulators in nanometric Si electronics are estimated via ab initio calculations of the energetics, dielectric properties, and band alignment of bulk and thin-film oxides on Si (001). With their large dielectric constants, stable and low-formation-energy interfaces, large valence offsets, and reasonable (though not optimal) conduction offsets (electron injection barriers), zirconia and hafnia appear to have considerable potential as gate oxides for Si electronics.  相似文献   

15.
16.
《Solid State Ionics》2006,177(19-25):1619-1624
The kinetics of the electrochemical reduction of molecular nitrogen at gold micro electrodes on yttria stabilized zirconia (YSZ) solid oxide electrolyte is studied by steady state polarization measurements. From the η / lg i plot for both cathodic and anodic polarization the apparent transfer coefficients αa and αc are evaluated. The sum of αa + αc exceeds unity and thus a multistep electron transfer process is suggested. The concept of the stoichiometric number is applied to the electrode reaction N2 + 6e = 2N3− supposing that the overall process involves at least two intermediate species. On the basis of the evaluation of the experimental results the reaction N2 + e  N22− is suggested as the rate determining reaction step for the cathodic nitrogen reduction and nitride formation.  相似文献   

17.
Inorganic halide perovskites CsPb X_3(X = I, Br) have attracted tremendous attention in solar cell applications. However, the bulk form of the cubic phase CsPb X_3, which offers moderate direct bandgaps, is metastable at room temperature and tends to transform into a tetragonal or orthorhombic phase. Here, our density functional theory calculation results found that the surface energies of the cubic phase are smaller than those of the orthorhombic phase, although the bulk counterpart of the cubic phase is less stable than that of the orthorhombic phase. These results suggest a surface stabilization strategy to maintain the stability of the cubic phase at room temperature that an enlarged portion of surfaces shall change the relative stability of the two phases in nanostructured CsPb X_3. This strategy, which may potentially solve the long-standing stability issue of cubic CsPb X_3, was demonstrated to be feasible by our calculations in zero-, one-, and two-dimensional nanostructures. In particular, confined sizes from few to tens of nanometers could keep the cubic phase as the most thermally favored form at room temperature. Our predicted values in particular cases, such as the zero-dimensional form of CsPbI_3,are highly consistent with experimental values, suggesting that our model is reasonable and our results are reliable. These predicted critical sizes give the upper and lower limits of the confined sizes, which may guide experimentalists to synthesize these nanostructures and promote likely practical applications such as solar cells and flexible displays using CsPb X_3 nanostructures.  相似文献   

18.
A variant of the solid-state radiation amorphization as a result of accumulation of the critical concentration of defects in the crystal has been considered using the example of oxides with the garnet and perovskite structures irradiated by fast neutrons. It has been shown that such defects can be antisite defects, the formation of which leads to considerable static displacements from the equilibrium sites of nearest ions and, consequently, to the loss of stability of the crystalline structure. The dependences of the root-mean-square displacements of oxygen ions on the concentration of the antisite defects are constructed based on the analysis of the experimental data. It has been established that the so-called critical concentrations of antisite defects, at which the spontaneous amorphization occurs, differ for oxides with the garnet and perovskite structures. As the criterion of the spontaneous radiation amorphization, it is proposed to consider the critical static displacement of the ions, which is identical for studied oxides and equal to ~0.28 Å, or ~0.14 in fractions of interatomic distances, which is close to the well-known Lindemann melting criterion.  相似文献   

19.
2 -doped YTZP ([%mol]3 Y2O3) compositions sintered in the temperature range of 1300 to 1450 °C, the tetragonal zirconia solid solutions field for the ZrO2-Y2O3-TiO2 system was established. The solubility of TiO2 in YTZP was found to be about 12–[%mol]14 at 1450 °C. Structural characterization of the Ti-YTZP tetragonal zirconia solid solutions was carried out using X-ray absorption spectroscopy (EXAFS and XANES) to provide information on the environment of Ti atoms. The electrical behavior in air of the TiO2-doped tetragonal zirconia solid solutions was studied by impedance spectroscopy in the temperature range of 300 to 800 °C, and it was found that the ionic conductivity decreases with increasing titania content. EXAFS and XANES results show that as the Ti4+ ions dissolve into the tetragonal zirconia YTZP matrix, a displacement of Ti ions from the center of symmetry takes place, leading to a non-random substitution of Ti4+ ions on Zr4+ lattice sites. Ti-O bond distances derived from EXAFS indicate that the Ti ion can be in a square-pyramidal arrangement, i.e., fivefold oxygen-coordinated. As a consequence two kinds of cation–oxygen vacancy associations are created; the high-mobility oxygen-vacancy–eightfold-coordinated cation (Zr4+) and the low-mobility oxygen-vacancy–fivefold-coordinated cation (Ti4+). This results in a decrease in the global concentration of moving oxygen vacancies and, therefore, in a decrease of the electrical conductivity. Received: 1 April 1998/Accepted: 28 September 1998  相似文献   

20.
Yttria-stabilized cubic zirconia bicrystals with [110] symmetric tilt grain boundaries are systematically fabricated by the diffusion bonding method. It is revealed that the grain-boundary atomistic structures, excess energies and solute segregation behaviours are strongly dependent on the macroscopic geometries of the boundaries. High-resolution transmission electron microscopy combined with lattice statics calculations suggests that the grain-boundary structures are characterized by the accumulation of coordination-deficient cation sites at their cores, whose densities have a clear correlation with excess energies and amounts of solute segregation. The orientation dependence of grain-boundary properties in cubic zirconia can thus be linked and understood via local grain-boundary atomistic structures with the characteristic miscoordinated cation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号