首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Designing versatile 3D interfaces that can precisely represent a biological environment is a prerequisite for the creation of artificial tissue structures. To this end, electrospun fibrous sponges, precisely mimicking an extracellular matrix and providing highly porous interfaces, have capabilities that can function as versatile physical cues to regenerate various tissues. However, their intrinsic features, such as sheet‐like, thin, and weak structures, limit the design of a number of uses in tissue engineering applications. Herein, a highly facile methodology capable of fabricating rigid, sticky, spatially expanded fluffy electrospun fibrous sponges is proposed. A bio‐inspired adhesive material, poly(dopamine) (pDA), is employed as a key mediator to provide rigidity and stickiness to the 3D poly(ε‐caprolactone) (PCL) fibrous sponges, which are fabricated using a coaxial electrospinning with polystyrene followed by a selective leaching process. The iron ion induced oxidation of dopamine into pDA networks interwoven with PCL fibers results in significant increases in the rigidity of 3D fibrous sponges. Furthermore, the exposure of catecholamine groups on the fiber surfaces promotes the stable attachment of the sponges on wet organ surfaces and triggers the robust immobilization of biomolecules (e.g., proteins and gene vectors), demonstrating their potential for 3D scaffolds as well as drug delivery vehicles. Because fibrous structures are ubiquitous in the human body, these rigid, sticky, 3D fibrous sponges are good candidates for powerful biomaterial systems that functionally mimic a variety of tissue structures.

  相似文献   


2.
For two-dimensional reversed-phase liquid chromatography–gas chromatography (2D RPLC–GC), a specially-designed needle packed with a polymer-coated fibrous stationary phase was introduced as a novel interface. The bundle of synthetic fibers coated with polydimethylsiloxane (PDMS) was packed into the head section of the needle, and served as the extraction medium. Using the post-column dilution of the LC eluent by water and subsequent extraction with the needle interface, the analyte was successfully concentrated to the PDMS phase on the fibrous support in the needle. The concentrated analytes were directly injected to GC system by inserting the needle to a heated GC injector. 2D separations of aliphatic and aromatic hydrocarbons, and also kerosene-extract were performed with the off-line RPLC–GC system interfaced by the needle extractor. The results suggested that the fiber-packed needle interface could be one of the simple and effective approaches to develop an on-line coupled LC–GC system.  相似文献   

3.
Biological processes have become popular for odor treatment. In this study, a novel fibrous bed bioreactor was applied for treatment of odorous gas. The column reactor was packed with spirally wound fibrous sheet material on which a consortium of microorganisms selected from activated sludge was immobilized. The first stage of this work comprised a preliminary study that aimed at investigating the feasibility of the fibrous bed bioreactor for treatment of odorous volatile fatty acids (VFAs). In this stage, the performance of a fibrous bed bioreactor at increasing mass loadings ranging from 9.7 to 104.2 g/(m3·h) was studied. VFA removal efficiencies above 90% were achieved at mass loadings up to 50.3 g/(m3·h). At a mass loading of 104.2 g/(m3·h), removal efficiency was found to be 87.7%. In the second stage of the work, the process was scaled up with design and operational considerations, namely, packing medium, process condition, and configuration selections. A trickling biofilter with synthetic fibrous packing medium was selected. It was operated under countercurrent flow of gas and liquid streams. The effects of inlet concentration and empty bed retention time on bioreactor performance were studied. The bioreactor was effective in treating odorous VFAs at mass loadings up to 32g/(m3·h), at which VFAs started to accumulate in the recirculation liquid, indicating that the biofilm was unable to degradeall the VFAs introduced. Although VFAs accumulated in the liquid phase, the removal efficency remained above 99%, implying that the biochemical reaction rate, rather than gas-to-liquid mass transfer rate, was the limiting factor of this process. The bioreactor was stable for longterm operation; no clogging and degeneration of the packing medium was observed during the 4-mo operation.  相似文献   

4.
We report a new synthesis method of fibrous carbon material with pores sizes that are precisely controlled at the Ångstrom level, by carbonization of two dimensional (2D) porous sheets of pillar[6]arenes. The 2D porous sheets were prepared by 2D supramolecular polymerization induced by oxidation of hydroquinone units of pillar[6]arenes. Owing to the hexagonal structure of pillar[6]arene, the assembly induced by 2D supramolecular polymerization gave hexagonal 2D porous sheets, and the highly ordered structure of the 2D porous sheets formed regular fibrous structures. Then, carbonization of the 2D porous sheets afforded fibrous carbon materials with micropores. The micropore size of the fibrous porous carbon prepared from pillar[6]arene was the same size as that of the starting material pillar[6]arene assembly.  相似文献   

5.
Electrospun ultrathin fiber‐based sensors are desirable because of their practicality and sensitivity. Ammonia‐detection systems are in high demand in different areas, including the industrial and agricultural fields. However, current technologies rely on large and complex instruments that restrict their actual utilization. Herein, we report a flexible naked‐eye ammonia sensor, the polylactic acid–cyanine (PLA‐Cy) fibrous mat, which was fabricated by blending a carboxyl‐functionalized cyanine dye ( D1 ) into electospun PLA porous fibers. The sensing mat was shown to undergo a naked‐eye‐detectable color change from white to blue upon exposure to ammonia vapor. The mat showed high selectivity to ammonia gas with a detection limit of 3.3 ppm. Aggregated D1 was first encapsulated by PLA and was then ionized by NH3. These mechanisms were examined by photophysical studies and scanning electron microscopy. The aggregation–deaggregation process of D1 in the PLA‐Cy fibrous mat led to the color change. This work provides a facile method for the naked‐eye detection of ammonia and a novel strategy for the use of organic dyes in ammonia sensing.  相似文献   

6.
The self-assembly of amphiphilic molecules into fibrous structures has been the subject of numerous studies over past decades due to various current and promising technical applications. Although very different in their head group chemistry many natural as well as synthetic amphiphilic compounds derived from carbohydrates, carbocyanine dyes, or amino acids tend to form fibrous structures by molecular self-assembly in water predominantly twisted ribbons or tubes. Often a transition between these assembly structures is observed, which is a phenomenon already theoretically approached by Wolfgang Helfrich and still focus point in current research. With the development of suitable sample preparation and electron optical imaging techniques, cryogenic transmission electron microscopy (cryo-TEM) in combination with three-dimensional (3D) reconstruction techniques has become a particular popular direct characterization technique for supramolecular assemblies in general. Here we review the recent progress in deriving precise structural information from cryo-TEM data of particularly fibrous structures preferably in three dimensions.  相似文献   

7.
Silica-based nanomaterials are of great interest because of their potential applications in constructing electronic and optoelectronic nanodevices. Especially significant are those that combine the properties of photonic crystal with a fibrous semiconductor structure. Here we report the use of microemulsion droplet systems as a simple and controllable route for the synthesis of 3D opals materials with an unusual fibrous microstructure similar to those that exist in nature. By this method, we demonstrate the creation of very long fibrils of 30-50 nm diameter and more than 20 μm length showing simultaneous short and long wavelength light emissions and band gap values (5.50 and 4.41 eV) comparable to those obtained for silicon-based metal oxide semiconductors.  相似文献   

8.
A three-dimensional (3D) fibrous cathode of solid oxide fuel cell was fabricated by using eggshell membranes (ESMs) as the template. This cathode possesses high porosity and interconnectivity, and low polarization resistance. A single fuel cell with the 3D fibrous Sm0.5Sr0.5CoO3/Ce0.8Sm0.2O1.9 cathode shows significantly improved performances at low operating temperatures (500–600 °C) as compared with the cell prepared with the ESM-templated cluster cathode in our previous study.  相似文献   

9.
Neural tissue engineering has become a potential technology to restore the functionality of damaged neural tissue with the hope to cure the patients with neural disorder and to improve their quality of life. This paper reports the design and synthesis of polypeptides containing neuron stimulate, glutamic acid, for the fabrication of biomimetic 3D scaffold in neural tissue engineering application. The polypeptides are synthesized by efficient chemical reactions. Monomer γ‐benzyl glutamate‐N‐carboxyanhydride undergoes ring‐opening polymerization to form poly(γ‐benzyl‐l ‐glutamate), then hydrolyzes into poly(γ‐benzyl‐l ‐glutamate)‐r‐poly(glutamic acid) random copolymer. The glutamic acid amount is controlled by hydrolysis time. The obtained polymer molecular weight is in the range of 200 kDa for good quality of fibers. The fibrous 3D scaffolds of polypeptides are fabricated using electrospinning techniques. The scaffolds are biodegradable and biocompatible. The biocompatibility and length of neurite growth are improved with increasing amount of glutamic acid in scaffold. The 3D scaffold fabricated from aligned fibers can guide anisotropic growth of neurite along the fiber and into 3D domain. Furthermore, the length of neurite outgrowth is longer for scaffold made from aligned fibers as compared with that of isotropic fibers. This new polypeptide has potential for the application in the tissue engineering for neural regeneration.  相似文献   

10.
A mathematical model of the electrochemical metal deposition process in a flow 3D electrode is developed with account for dynamic distribution of the flow velocity of electrolyte, metal mass, potential, porosity, conductivity, specific electrode surface area, and other characteristics in the local volume of the electrode. These characteristics of the process and electrode are considered as functions of time and coordinate within the electrode. The results of experimental studies and calculations of copper electrodeposition process from ammonium sulfate electrolyte onto cathodes of graphitized carbon fibrous materials with different conductivity are presented at different initial flow velocities of electrolyte.  相似文献   

11.
A simple method has been proposed for determining the average fiber length in unit volume of a polydisperse fibrous material as depending on fiber diameter. The method consists in the measurement of light attenuation as a function of the distance from an examined sample. The method entails comparison of the measured energy fluxes that reach a detector before and after scattering by an examined fibrous material sample and uses an integral relation that expresses the intensity of light transmitted through a random medium via the electric-field correlation function. Formulas have been found for the electric-field correlation function after the passage through a layer of a polydisperse fibrous material with random arrangement and orientation of fibers. The obtained correlation function enables one to derive an integral equation that expresses the logarithmic ratio of the energy fluxes reaching the radiation detector before and after the passage through a scattering medium via the fiber size-distribution function. Solution of this integral equation makes it possible to determine the fiber-size distribution function from the light attenuation measured as depending on the distance from the point of observation. Experiments have been carried out for several fibrous filters and relevant calculations have been presented. The results of the solution of the integral equation agree with the data obtained by other experimental methods and with visual processing of electron micrographs.  相似文献   

12.
Water-in-oil emulsion separation through a fibrous media bed is a complex and challenging process in industries. In this article, we used a vertical column separator to investigate the effects of the height and porosity of the fiber bed, the structure arrangement (the mixed or the layered fibrous bed), the superficial velocity of the water-in-oil emulsion through the bed, and the influent water content of the emulsion on water removal. Four kinds of glass microfibers (GF1-GF4) with mean diameters of 0.6, 2.6, 4.6, and 8.0?µm, respectively, acted as the coalescence medium and composed the fibrous bed with different structure types. The separation efficiency could reach 97.1% with a relatively low pressure drop under the optimal bed structure and operational conditions. It also showed that the mixed bed had higher separation performance compared to the layered fibrous bed.  相似文献   

13.
A series of cholesterol-appended quinacridone (QA) derivatives 1a-1d have been synthesized,in which 1b and 1c could form stable organogels in a wide range of organic solvents upon ultrasound irradiation.Field emission scanning electronic microscope (FESEM) and transmission electron microscopy (TEM) of xerogels or precipitates indicated that 1b and 1c formed 1D fibrous nanostructure,while 1a assembled into 3D flower-like microstructures.The ultrasound-induced organogel process was characterized by kinetic UV...  相似文献   

14.
The self-assembly of diaminododecane solubilised by four different stereoisomeric dendritic peptides to form gel-phase materials in toluene was investigated. The second generation dendritic peptides were based on D- and L-lysine building blocks, and each contained three chiral centres. By designing dendritic peptides in which the configurations of the chiral centres were modified, and applying them as gelator units, the assembly of stereoisomers could be investigated. In all cases, the self-assembly of gelator units resulted in macroscopic gelation. However, the degree of structuring was modulated by the stereoisomers employed, an effect which changed the morphology and macroscopic behavior of the self-assembled state. Enantiomeric (L,L,L or D,D,D) gelator units formed fibrous molecular assemblies, whilst the racemic gel (50 % L,L,L : 50 % D,D,D) formed a flat structure with a "woven" appearance. Gelator units based on L,D,D or D,L,L dendritic peptides also formed fibrous assemblies, but small-angle X-ray scattering indicated significant morphological differences were caused by the switch in chirality. Furthermore, the macroscopic stability of the gel was diminished when these peptides were compared with their L,L,L or D,D,D analogues. In this paper it is clearly shown that individual stereocentres, on the molecular level, are directly related to the helicity within the fibre. It is argued that the chirality controls the pattern of hydrogen bonding within the assembly, and hence determines the extent of fibre formation and the macroscopic gel strength.  相似文献   

15.
New fluorescent gelators containing pyrene moieties and dendritic oligopeptides have been developed. These molecules self-assemble into 1D helical columnar structures that lead to the formation of 3D fibrous random networks. The resulting gel materials show monomer emission of pyrenes because the hydrogen-bonded array of the oligopeptide moieties greatly suppresses the formation of pyrene excimers. In contrast, in the sol states green excimer emission of the pyrenes is observed because of the dissociation of intermolecular hydrogen bonds. This is the first example of the reverse-mode color switching of fluorescence for supramolecular pyrene assemblies.  相似文献   

16.
With the use of scanning electron microscopy, differential scanning calorimetry, and electron paramagnetic resonance, the structural–dynamic analysis of ultrathin fibrous matrixes based on poly(3-hydroxybutyrate) and blend composites of this polymer with chitosan is performed. It is shown that the addition of a small amount of chitosan causes change in the morphologies of the matrixes and leads to a marked increase in their melting enthalpies. It is found that the studied fibers contain amorphous regions with various morphologies. The dynamics of the spin probe TEMPO in these regions is investigated, and its change under the influence of increased temperature, an aqueous medium, and ozone is examined. The mechanism controlling the effects of chitosan, temperature, and an oxidative aggressive medium on the structuring of fibers is advanced.  相似文献   

17.
Cancer is a global issue and a serious threat to human health, one approach to treatment is starvation therapy. Recently, three-dimensional (3D) bioprinted tumor tissue models have been developed; however, whether 3D bioprinted models are good for in vitro study of starvation therapy is unclear. In this study, we studied the state of cells with serum-free medium in both 3D bioprinted scaffold and 2D cell cultures and found that 3D bioprinted cancer cells (3D cells) were more tolerant to serum starvation than 2D cells in terms of cell viability, cell proliferation, and M2 macrophage polarization. Moreover, the ratio of LC3II/I, an index of autophagy, increased much more in 3D cells, and 3D cells showed more autophagosomes than 2D cells after serum starvation, which indicated that the autophagy levels were higher in 3D cells. These results suggested that 3D cells are more tolerant to serum starvation than 2D cells, and autophagy may play an important role in this process.  相似文献   

18.
In this paper we report the results on the use of L-ascorbic acid (AA) in assembling metal nanoparticles (NPs) into three-dimensional fibrous structures. The degradation product of AA leads to the formation of fibrous structures, which has been used as a template for deposition of metal NPs such as Au, Pt, and Ag. We also report that AA can be used as the reducing agent in generating Au NPs. The spontaneous fiber formation and formation of Au NPs by AA have been coupled to generate fibers made up of composite of Au NPs and the polymer from the degradation products of AA. These fibers appear in the form of a fiber bundle with branched structures having overall dimensions on the order of several millimeters. They have typical widths of 1-4 microm with length of each segment of fiber bundle on the order of 40 microm. The composite fiber bundle has been found to be electrically conducting with surface resistivity on the order of 2.16x10(3) Omegacm. UV-vis spectroscopy, X-ray diffraction, transmission and scanning electron microscopic measurements were used to establish the formation of fibrous structures in the medium.  相似文献   

19.
In this paper, an analysis to distinguish the geometric and porosimetric pore size distributions of a fibrous material is presented. The work is based on simulating the intrusion of nonwetting fluid in a series of 3-D fibrous microstructures obtained from 3-D image reconstruction or virtual geometries mathematically generated according to the properties of the media. We start our study by computing the pore size distribution of two typical hydroentangled nonwoven materials and present a theoretical model for their geometric pore size distributions based on Poisson line network model of the fibrous media. It is shown that the probability density function of the geometric pore size distribution can be approximated by a two-parametric Gamma distribution. We also study connectivity of the pore space in fibrous media by computing and comparing the accessible and allowed pore volumes in the form access function graphs. It is shown that the so-called ink-bottle effect can significantly influence the fluid intrusion in a porous material. The pore space connectivity of a homogeneous fibrous media is observed to be a function of thickness, solid volume fraction (SVF), and fiber diameter. It is shown that increasing the materials' thickness or SVF, while other properties are kept constant, reduces the pore space connectivity. On the other hand, increasing the fiber diameter enhances the connectivity of the pores if all other parameters are fixed. Moreover, modeling layered fibrous microstructures; it is shown that the access function graphs can be used to detect the location of the bottle neck pores in a layered/composite porous material.  相似文献   

20.
Solvothermally treating an as-prepared poly(vinylidenefluoride) (PVDF) colloidal suspension leads to a significant impact on the surface properties of the resulting topcoat on a pertinent prime coating. The coating, possessing a fibrous porous matrix, exhibits a water contact angle in the range of 115–136°. However, the coating possesses droplets sticking ability that can be attributed to the pseudo-hydrogen bonding effect of the polarized C–H bonds in each repeating unit of PVDF polymer chains. The hydrophobicity of the topcoat is affected by the formulation of colloidal suspension, which is carried out by introducing a solution of PVDF in dimethylforamide into an excess of methanol. The colloidal suspension formed is subjected to solvothermal treatment subsequently. By thermodynamics, the treatment enhances chain packing density and growth of crystallites inside the colloidal particles of PVDF in the methanol-dominant dispersion medium. Furthermore, the realized chain packing states are retained during the drying of coating through chain affixation role of a small number of poly(divinylbenzene) nodules generated in situ. As a result, a fibrous porous matrix composed of the PVDF submicron knots is attained. The coexistence of the polarized CH2 group and the fibrous porous structure prompts a sticky hydrophobic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号