首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary : We present the O2 binding properties of recombinant human serum albumin (rHSA) mutants complexed with an iron(II) protoporphyrin IX as a prosthetic heme group. Iron(III) protoporphyrin IX (hemin) is bound within subdomain IB of HSA with weak axial coordination by Tyr-161. In order to confer O2 binding capability to this naturally occurring hemoprotein: (i) a proximal histidine was introduced into position Ile-142; and (ii) the coordinated Tyr-161 was replaced with hydrophobic Leu using site-directed mutagenesis. It provided a recombinant HSA double-mutant [rHSA(I142H/Y161L) = rHSA(HL)]. The rHSA(HL)–heme formed a ferrous five-coordinate high-spin complex with axial ligation of His-142 under an Ar atmosphere. This artificial hemoprotein binds O2 at room temperature. Laser flash photolysis experiments demonstrated that O2 rebinidng to rHSA(HL)–heme displays monophasic kinetics, whereas the CO recombination process obeyed a double-exponential pattern. This might be attributable to the two different geometries of the axial imidazole coordination arising from the two orientations of the porphyrin plane in the heme pocket. The O2 binding affinity of rHSA(HL)–heme was considerably lower than those of R-state hemoglobin (Hb) and myoglobin (Mb), principally because of the high O2 dissociation rate constant. The third mutations have been introduced into the distal side of the heme (at position Leu-185 or Arg-186) to increase the O2 binidng affinity. The rHSA(HL/L185N)–heme showed high O2 binding affinity ( : 1 Torr), which is 18-fold greater than that of the original double mutant rHSA(HL)–heme and which is rather close to those of Hb (R-state) and Mb. Furthermore, replacement of polar Arg-186 with Leu or Phe adjusted the O2 binding affinity ( ) to 10 Torr, which is almost equivalent to value for human red blood cells.  相似文献   

2.
The binding properties of O2 and CO to recombinant human serum albumin (rHSA) mutants with a prosthetic heme group have been physicochemically and kinetically characterized. Iron(III) protoporphyrin IX (hemin) is bound in subdomain IB of wild-type rHSA [rHSA(wt)] with weak axial coordination by Tyr-161. The reduced ferrous rHSA(wt)-heme under an Ar atmosphere exists in an unusual mixture of four- and five-coordinate complexes and is immediately autoxidized by O2. To confer O2 binding capability on this naturally occurring hemoprotein, a proximal histidine was introduced into position Ile-142 or Leu-185 by site-directed mutagenesis. A single mutant (I142H) and three double mutants (I142H/Y161L, I142H/Y161F, and Y161L/L185H) were prepared. Both rHSA(I142H/Y161L)-heme and rHSA(I142H/Y161F)-heme formed ferrous five-N-coordinate high-spin complexes with axial ligation of His-142 under an Ar atmosphere. These artificial hemoproteins bind O2 at room temperature. Mutation at the other side of the porphyrin, Y161L/L185H, also allowed O2 binding to the heme. In contrast, the single mutant rHSA(I142H)-heme could not bind O2, suggesting that removal of Y161 is necessary to confer reversible O2 binding. Laser flash photolysis experiments showed that the kinetics of CO recombination with the rHSA(mutant)-heme were biphasic, whereas O2 rebinding exhibited monophasic kinetics. This could be due to the two different geometries of the axial imidazole coordination arising from the two orientations of the porphyrin plane in the heme pocket. The O2 binding affinities of the rHSA(mutant)-heme were significantly lower than those of hemoglobin and myoglobin, principally due to the high O2 dissociation rates. Changing Leu-161 to Phe-161 at the distal side increased the association rates of both O2 and CO, which resulted in enhanced binding affinity.  相似文献   

3.
Complexing an iron protoporphyrin IX into a genetically engineered heme pocket of recombinant human serum albumin (rHSA) generates an artificial hemoprotein, which can bind O2 in much the same way as hemoglobin (Hb). We previously demonstrated a pair of mutations that are required to enable the prosthetic heme group to bind O2 reversibly: (i) Ile-142-->His, which is axially coordinated to the central Fe2+ ion of the heme, and (ii) Tyr-161-->Phe or Leu, which makes the sixth coordinate position available for ligand interactions [I142H/Y161F (HF) or I142H/Y161L (HL)]. Here we describe additional new mutations designed to manipulate the architecture of the heme pocket in rHSA-heme complexes by specifically altering distal amino acids. We show that introduction of a third mutation on the distal side of the heme (at position Leu-185, Leu-182, or Arg-186) can modulate the O2 binding equilibrium. The coordination structures and ligand (O2 and CO) binding properties of nine rHSA(triple mutant)-heme complexes have been physicochemically and kinetically characterized. Several substitutions were severely detrimental to O2 binding: for example, Gln-185, His-185, and His-182 all generated a weak six-coordinate heme, while the rHSA(HF/R186H)-heme complex possessed a typical bis-histidyl hemochrome that was immediately autoxidized by O2. In marked contrast, HSA(HL/L185N)-heme showed very high O2 binding affinity (P1/2O2 1 Torr, 22 degrees C), which is 18-fold greater than that of the original double mutant rHSA(HL)-heme and very close to the affinities exhibited by myoglobin and the high-affinity form of Hb. Introduction of Asn at position 185 enhances O2 binding primarily by reducing the O2 dissociation rate constant. Replacement of polar Arg-186 with Leu or Phe increased the hydrophobicity of the distal environment, yielded a complex with reduced O2 binding affinity (P1/2O2 9-10 Torr, 22 degrees C), which nevertheless is almost the same as that of human red blood cells and therefore better tuned to a role in O2 transport.  相似文献   

4.
Interconversion dynamics of the ligand in the primary docking site of myoglobin (Mb) and hemoglobin (Hb) in trehalose and glycerol/D2O mixtures at 283 K was investigated by probing time-resolved vibrational spectra of CO photolyzed from these proteins. The interconversion dynamics in viscous media are similar to those in aqueous solution, indicating that it is minimally coupled to the solvent-coupled large-scale protein motion. Interconversion rates in the heme pocket of Hb in water solution are slower than those of Mb in trehalose glass, suggesting that the interconversion barrier in Hb is intrinsically higher than that in Mb and is not modified by the solvent viscosity.  相似文献   

5.
Du J  Perera R  Dawson JH 《Inorganic chemistry》2011,50(4):1242-1249
His93Gly sperm whale myoglobin (H93G Mb) has the proximal histidine ligand removed to create a cavity for exogenous ligand binding, providing a remarkably versatile template for the preparation of model heme complexes. The investigation of model heme adducts is an important way to probe the relationship between coordination structure and catalytic function in heme enzymes. In this study, we have successfully generated and spectroscopically characterized the H93G Mb cavity mutant ligated with less common alkylamine ligands (models for Lys or the amine group of N-terminal amino acids) in numerous heme iron states. All complexes have been characterized by electronic absorption and magnetic circular dichroism spectroscopy in comparison with data for parallel imidazole-ligated H93G heme iron moieties. This is the first systematic spectral study of models for alkylamine- or terminal amine-ligated heme centers in proteins. High-spin mono- and low-spin bis-amine-ligated ferrous and ferric H93G Mb adducts have been prepared together with mixed-ligand ferric heme complexes with alkylamine trans to nitrite or imidazole as heme coordination models for cytochrome c nitrite reductase or cytochrome f, respectively. Six-coordinate ferrous H93G Mb derivatives with CO, NO, and O(2) trans to the alkylamine have also been successfully formed, the latter for the first time. Finally, a novel high-valent ferryl species has been generated. The data in this study represent the first thorough investigation of the spectroscopic properties of alkylamine-ligated heme iron systems as models for naturally occurring heme proteins ligated by Lys or terminal amines.  相似文献   

6.
To address the role of the secondary hydroxyl group of heme a/o in heme-copper oxidases, we incorporated Fe(III)-2,4 (4,2) hydroxyethyl vinyl deuterioporphyrin IX, as a heme o mimic, into the engineered heme-copper center in myoglobin (sperm whale myoglobin L29H/F43H, called Cu(B)Mb). The only difference between the heme b of myoglobin and the heme o mimic is the substitution of one of the vinyl side chains of the former with a hydroxyethyl group of the latter. This substitution resulted in an approximately 4 nm blue shift in the Soret band and approximately 20 mV decrease in the heme reduction potential. In a control experiment, the heme b in Cu(B)Mb was also replaced with a mesoheme, which resulted in an approximately 13 nm blue shift and approximately 30 mV decrease in the heme reduction potential. Kinetic studies of the heme o mimic-substituted Cu(B)Mb showed significantly different reactivity toward copper-dependent oxygen reduction from that of the b-type Cu(B)Mb. In reaction with O2, Cu(B)Mb with a native heme b showed heme oxygenase activity by generating verdoheme in the presence of Cu(I). This heme degradation reaction was slowed by approximately 19-fold in the heme o mimic-substituted Cu(B)Mb (from 0.028 s(-1) to 0.0015 s(-1)), while the mesoheme-substituted Cu(B)Mb shared a similar heme degradation rate with that of Cu(B)Mb (0.023 s(-1)). No correlation was found between the heme reduction potential and its O2 reactivity. These results strongly suggest the critical role of the hydroxyl group of heme o in modulating heme-copper oxidase activity through participation in an extra hydrogen-bonding network.  相似文献   

7.
The effects of metal ions on the reduction of nitric oxide (NO) with a designed heme copper center in myoglobin (F43H/L29H sperm whale Mb, CuBMb) were investigated under reducing anaerobic conditions using UV-vis and EPR spectroscopic techniques as well as GC/MS. In the presence of Cu(I), catalytic reduction of NO to N2O by CuBMb was observed with turnover number of 2 mol NO.mol CuBMb-1.min-1, close to 3 mol NO.mol enzyme-1.min-1 reported for the ba3 oxidases from T. thermophilus. Formation of a His-heme-NO species was detected by UV-vis and EPR spectroscopy. In comparison to the EPR spectra of ferrous-CuBMb-NO in the absence of metal ions, the EPR spectra of ferrous-CuBMb-NO in the presence of Cu(I) showed less-resolved hyperfine splitting from the proximal histidine, probably due to weakening of the proximal His-heme bond. In the presence of Zn(II), formation of a five-coordinate ferrous-CuBMb-NO species, resulting from cleavage of the proximal heme Fe-His bond, was shown by UV-vis and EPR spectroscopic studies. The reduction of NO to N2O was not observed in the presence of Zn(II). Control experiments using wild-type myoglobin indicated no reduction of NO in the presence of either Cu(I) or Zn(II). These results suggest that both the identity and the oxidation state of the metal ion in the CuB center are important for NO reduction. A redox-active metal ion is required to deliver electrons, and a higher oxidation state is preferred to weaken the heme iron-proximal histidine toward a five-coordinate key intermediate in NO reduction.  相似文献   

8.
Human serum albumin (HSA), the most prominent protein in blood plasma, is able to bind a wide range of endogenous and exogenous compounds. Among the endogenous ligands, HSA is a significant transporter of heme, the heme-HSA complex being present in blood plasma. Drug binding to heme-HSA affects allosterically the heme affinity for HSA and vice versa. Heme-HSA, heme, and their complexes with ibuprofen have been characterized by electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy. Comparison of the results for the heme and heme-HSA systems has provided insight into the structural consequences on the heme pocket of ibuprofen binding. The pentacoordinate tyrosine-bound heme coordination of heme-HSA, observed in the absence of ibuprofen, becomes hexacoordinate low spin upon ibuprofen binding, and heme dissociates at increasing drug levels. The electronic absorption spectrum and nu(Fe-CO)/nu(CO) vibrational frequencies of the CO-heme-HSA-ibuprofen complex, together with the observation of a Fe-His Raman mode at 218 cm(-1) upon photolysis of the CO complex and the low spin EPR g values indicate that a His residue is one of the low spin axial ligands, the sixth ligand probably being Tyr161. The only His residue in the vicinity of the heme Fe atom is His146, 9 A distant in the absence of the drug. This indicates that drug binding to heme-HSA results in a significant rearrangement of the heme pocket, implying that the conformational adaptability of HSA involves more than the immediate vicinity of the drug binding site. As a whole, the present spectroscopic investigation supports the notion that HSA could be considered as the prototype of monomeric allosteric proteins.  相似文献   

9.
The rebinding kinetics of NO to the heme iron of myoglobin (Mb) is investigated as a function of temperature. Below 200 K, the transition-state enthalpy barrier associated with the fastest (approximately 10 ps) recombination phase is found to be zero and a slower geminate phase (approximately 200 ps) reveals a small enthalpic barrier (approximately 3 +/- 1 kJ/mol). Both of the kinetic rates slow slightly in the myoglobin (Mb) samples above 200 K, suggesting that a small amount of protein relaxation takes place above the solvent glass transition. When the temperature dependence of the NO recombination in Mb is studied under conditions where the distal pocket is mutated (e.g., V68W), the rebinding kinetics lack the slow phase. This is consistent with a mechanism where the slower (approximately 200 ps) kinetic phase involves transitions of the NO ligand into the distal heme pocket from a more distant site (e.g., in or near the Xe4 cavity). Comparison of the temperature-dependent NO rebinding kinetics of native Mb with that of the bare heme (PPIX) in glycerol reveals that the fast (enthalpically barrierless) NO rebinding process observed below 200 K is independent of the presence or absence of the proximal histidine ligand. In contrast, the slowing of the kinetic rates above 200 K in MbNO disappears in the absence of the protein. Generally, the data indicate that, in contrast to CO, the NO ligand binds to the heme iron through a "harpoon" mechanism where the heme iron out-of-plane conformation presents a negligible enthalpic barrier to NO rebinding. These observations strongly support a previous analysis (Srajer et al. J. Am. Chem. Soc. 1988, 110, 6656-6670) that primarily attributes the low-temperature stretched exponential rebinding of MbCO to a quenched distribution of heme geometries. A simple model, consistent with this prior analysis, is presented that explains a variety of MbNO rebinding experiments, including the dependence of the kinetic amplitudes on the pump photon energy.  相似文献   

10.
Control of O2 versus CO binding in myoglobin (Mb) is tuned by a distal histidine residue through steric and H-bonding interactions. These interactions have been evaluated via Car-Parrinello DFT calculations, whose efficiency allows full quantum mechanical treatment of the 13 closest residues surrounding the heme. The small (8 degrees ) deviation of the Fe-C-O bond angle from linearity results from the steric influence of a distal valine residue and not the distal histidine. H-bond energies were evaluated by replacing the distal histidine with the non-H-bonding residue isoleucine. Binding energies for CO and O2 decreased by 0.8 and 4.1 kcal/mol for MbCO and MbO2, in good agreement with experimental H-bond estimates. Ligand discrimination is dominated by distal histidine H-bonding, which is also found to stabilize a metastable side-on isomer of MbO2 that may play a key role in MbO2 photodynamics.  相似文献   

11.
《Chemistry & biology》1996,3(7):561-566
Background: The Rhizobial oxygen sensor FixL is a hemoprotein with kinase activity. On binding of strong-field ligands, a change of the ferrous or ferric heme iron from high to low spin reversibly inactivates the kinase. This spin-state change and other information on the heme pocket have been inferred from enzymatic assays, absorption spectra and mutagenesis studies. We set out to investigate the spin-state of the FixL heme and to identify the hyperfine-shifted heme-proton signals by NMR spectroscopy.Results: Using one-dimensional N MR we directly observed the high- and low-spin nature of the met- and cyanomet-FixL heme domain, respectively. We determined the hyperfine-shifted 1H-NMR signals of the heme and the proximal histidine by one- and two-dimensional spectroscopy and note the absence of distal histidine signals.Conclusions: These findings support the spin-state mechanism of FixL regulation. They establish that the site of heme coordination is a histidine residue and strongly suggest that a distal histidine is absent. With a majority of the heme resonances identified, one- and two-dimensional NMR techniques can be extended to provide structural and mechanistic information about the residues that line the heme pocket.  相似文献   

12.
Heme proteins are found in all living organisms and are capable of performing a wide variety of tasks, requiring in many cases the binding of diatomic ligands, namely, O(2), CO, and/or NO. Therefore, subtle regulation of these diatomic ligands' affinity is one of the key issues for determining a heme protein's function. This regulation is achieved through direct H-bond interactions between the bound ligand and the protein, and by subtle tuning of the intrinsic heme group reactivity. In this work, we present an investigation of the proximal regulation of oxygen affinity in Fe(II) histidine coordinated heme proteins by means of computer simulation. Density functional theory calculations on heme model systems are used to analyze three proximal effects: charge donation, rotational position, and distance to the heme porphyrin plane of the proximal histidine. In addition, hybrid quantum-classical (QM-MM) calculations were performed in two representative proteins: myoglobin and leghemoglobin. Our results show that all three effects are capable of tuning the Fe-O(2) bond strength in a cooperative way, consistently with the experimental data on oxygen affinity. The proximal effects described herein could operate in a large variety of O(2)-binding heme proteins-in combination with distal effects-and are essential to understand the factors determining a heme protein's O(2) affinity.  相似文献   

13.
One of the difficulties in preparing accurate ambient-temperature model complexes for heme proteins, particularly in the ferric state, has been the generation of mixed-ligand adducts: complexes with different ligands on either side of the heme. The difference in the accessibility of the two sides of the heme in the H93G cavity mutant of myoglobin (Mb) provides a potential general solution to this problem. To demonstrate the versatility of H93G Mb for the preparation of heme protein models, numerous mixed-ligand adducts of ferrous, ferric, and ferryl imidazole-ligated H93G (H93G(Im) Mb) have been prepared. The complexes have been characterized by electronic absorption and magnetic circular dichroism (MCD) spectroscopy in comparison to analogous derivatives of wild type Mb. The starting ferric H93G(Im) Mb state spectroscopically resembles wild-type ferric Mb as expected for a complex containing a single imidazole in the proximal cavity and water bound on the distal side. Addition of a sixth ligand to ferric H93G(Im) Mb, whether charge neutral (imidazole) or anionic (cyanide and azide), results in formation of six-coordinate low-spin complexes with MCD characteristics similar to those of parallel derivatives of wild-type ferric Mb. Reduction of ferric H93G(Im) Mb and subsequent exposure to either CO, NO, or O2 produces ferrous complexes (deoxy, CO, NO, and O2) that consistently exhibit MCD spectra similar to the analogous ferrous species of wild-type ferrous Mb. Most interestingly, reaction of ferric H93G(Im) Mb with H2O2 results in the formation of a stable high-valent oxoferryl complex with MCD characteristics that are essentially identical to those of oxoferryl wild-type Mb. The generation of such a wide array of mixed-ligand heme complexes demonstrates the efficacy of the H93G Mb cavity mutant as a template for the preparation of heme protein model complexes.  相似文献   

14.
Parametrization of a molecular-mechanics program to include terms specific for five- and six-coordinate transition metal complexes results in computer-simulated structures of heme complexes. The principal new feature peculiar to five and six coordination is a term that measures the effect of electron-pair repulsion modified by the ligand electronegativity and takes into account the different structural possibilities. The model system takes into account the structural differences of the fixing centre in the haemoglobin subunits. The customary proximal histidine is added. The prosthetic group heme IX is wholly considered in our model. The calculations show clearly that certain conformations are much more favourable that others for fixing O2. From the O2 binding in haemoglobin, myoglobin and simple Fe porphyrin models it is concluded that the bent O2 ligand is best viewed as bound superoxide O2-. Axial ligands are practically free-rotating. A small modification of the model in both crystal and protein matrix affects the orientation of the ligands in experimental systems.  相似文献   

15.
HNO can interact with numerous heme proteins, but atomic level structures are largely unknown. In this work, various structural models for the first stable HNO heme protein complex, MbHNO (Mb, myoglobin), were examined by quantum chemical calculations. This investigation led to the discovery of two novel structural models that can excellently reproduce numerous experimental spectroscopic properties. They are also the first atomic level structures that can account for the experimentally observed high stabilities. These two models involve two distal His conformations as reported previously for MbCNR and MbNO. However, a unique dual hydrogen bonding feature of the HNO binding was not reported before in heme protein complexes with other small molecules such as CO, NO, and O(2). These results shall facilitate investigations of HNO bindings in other heme proteins.  相似文献   

16.
We present a broad study of the effect of neutralizing the two negative charges of the Mb propionates on the interaction and electron transfer (ET) between horse Mb and bovine cyt b(5), through use of Zn-substituted Mb (ZnMb, 1) to study the photoinitiated reaction, ((3)ZnP)Mb + Fe(3+)cyt b(5) --> (ZnP)(+)Mb + Fe(2+)cyt b(5). The charge neutralization has been carried out both by replacing the Mb heme with zinc-deuteroporphyrin dimethylester (ZnMb(dme), 2), which replaces the charges by small neutral hydrophobic patches, and also by replacement with the newly prepared zinc-deuteroporphyrin diamide (ZnMb(diamide), 3), which converts the charged groups to neutral, hydrophilic ones. The effect of propionate neutralization on the conformation of the zinc-porphyrin in the Mb heme pocket has been studied by multinuclear NMR with an (15)N labeled zinc porphyrin derivative (ZnMb((15)N-diamide), 4). The rates of photoinitiated ET between the Mb's (1-3) and cyt b(5) have been measured over a range of pH values and ionic strengths. Isothermal titration calorimetry (ITC) and NMR methods have been used to independently investigate the effect of charge neutralization on Mb/b(5) binding. The neutralization of the two heme propionates of ZnMb by formation of the heme diester or, for the first time, the diamide increases the second-order rate constant of the ET reaction between ZnMb and cyt b(5) by as much as several 100-fold, depending on pH and ionic strength, while causing negligible changes in binding affinity. Brownian dynamic (BD) simulations and ET pathway calculations provide insight into the protein docking and ET process. The results support a new "dynamic docking" paradigm for protein-protein reactions in which numerous weakly bound conformations of the docked complex contribute to the binding of cyt b(5) to Mb and Hb, but only a very small subset of these are ET active, and this subset does not include the conformations most favorable for binding; the Mb surface is a large "target" with a small "bullseye" for the cyt b(5) "arrow". This paradigm differs sharply from the more familiar, "simple" docking within a single, or narrow range of conformations, where binding strength and ET reactivity increase in parallel. Likewise, it is distinct from, although complementary to, the well-known picture of conformational control of ET through "gating", or a related picture of "conformational coupling". The new model describes situations in which tight binding does not correlate with efficient ET reactivity, and explains how it is possible to modulate reactivity without changing affinity. Such "decoupling" of reactivity from binding clearly is of physiological relevance for the reduction of met-Mb in muscle and of met-Hb in a red cell, where tight binding of cyt b(5) to the high concentration of ferrous-Mb/Hb would prevent the cytochrome from finding and reducing the oxidized proteins; it likely is of physiological relevance in other situations, as well.  相似文献   

17.
New, reconstituted horse heart myoglobins possessing a hydrophobic domain at the terminal of the two heme propionate side chains were constructed. The O2 and CO bindings for the reconstituted deoxymyoglobins were examined in detail by laser flash photolysis and stopped-flow rapid mixing techniques. The artificially created domain worked as a barrier against exogenous ligand penetration into the heme pocket, whereas the bound O2 was stabilized in the reconstituted myoglobin as well as in the native one. In contrast, the CO dissociation rate for the reconstituted myoglobin increased by 20-fold compared to the native protein, suggesting that the incorporation of the hydrophobic domain onto the heme pocket perturbs the distal-site structure of the reconstituted myoglobin. As a result, the substantial ligand selectivity for the reconstituted myoglobin significantly increases in favor of O2 over CO with the M' value (= KCO/KO2) of 0.88, whereas, to the best of our knowledge, there is no myoglobin mutant in which the O2 affinity exceeds the CO one. The present work concludes that the O2 selectivity of myoglobin over CO is markedly improved by chemically modifying the heme propionates without any mutation of the amino acid residues in the distal site.  相似文献   

18.
Cytochromes c' are pentacoordinate heme proteins with sterically hindered distal sites that bind NO and CO but do not form stable complexes with O(2). Removal of distal pocket steric hindrance via a Leu→Ala mutation yields favorable O(2) binding (K(d) ~49 nM) without apparent H-bond stabilization of the Fe-O(2) moiety, as well as an extremely high distal heme-NO affinity (K(d) ~70 fM). The native Leu residue inhibits distal coordination of diatomic ligands by decreasing k(on) as well as increasing k(off). The connection between distal steric constraints, k(off) values, and distal to proximal heme-NO conversion is discussed.  相似文献   

19.
Photophysical studies of 4-Dicyanomethylene-2,6-Dimethyl-4H-Pyran (DDP) dye with globular proteins, Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) were carried out in aqueous solution. An isosbestic point resulted on the addition of serum albumins, which signifies a complex or an equilibrium state of DDP dye with albumin. Addition of BSA to DDP dye results in a fluorescence enhancement accompanied with a significant hypsochromic shift, whereas with that of HSA, a fluorescence quenching with a considerable blue shift resulted. Excited state studies of DDP dye with serum albumins portray that the role of binding sites of dye with albumins vary considerably and the nature of interaction is presumably attributed to combined hydrogen-bonding and hydrophobic interactions. Molecular docking studies of DDP dye with albumins and two other derivatives 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye and 4-(Dicyanomethylene)-2-methyl-6-(4-t-buyl)-4H-pyran (DCT) dyes with BSA and HSA elucidates that the hydrogen-bonding interaction accompanied with several hydrophobic, pi–pi an pi–alkyl interactions coexist between dye and albumins. The binding energy, intermolecular energy and stability of the DDP, DCM and DCT dyes through docking techniques with albumins authenticate that the dye predominantly acts as hydrogen-bonding acceptor site and the protein molecule as the donor. DDP dye prefers to exist in four different binding sites of HSA, whereas, in the case of BSA, the most preferred site is found to be hydrophobic domain (site I). Interestingly, the most preferred site of DCT dye is III A subdomain of HSA, whereas DCM dye is oriented towards I B subdomain. DDP and DCT are smaller in size and reside in the domain preferred for smaller ligands (II A and IIIA) as resulted in several drugs-HSA interaction whereas DCM dye which is categorized as medium to larger ligand based on the extended structure resides in the most favoured site IB. Fluorescence techniques in combination with molecular docking methods elucidate binding characteristics and the domain in which the dye resides in a micro heterogeneous environment is established in this study.  相似文献   

20.
The interactions between the new organometallic complexes, ferrocene-substituted dithio-o-carborane conjugates (denoted as FcSB1, FcSB2 and FcSBCO) and hemoglobin (Hb) are investigated by electrochemistry, fluorescence and UV-vis absorption spectroscopy. The results demonstrate that FcSB1, FcSB2 and FcSBCO can bind to the heme iron center through the replacement of the weakly bound H2O/O2 in the distal heme pocket of Hb by their sulfur donor atoms, inducing the allosteric change from the R state (oxygenated conformation, relax) to T state (deoxygenated conformation, tense). The binding affinity is in the order of FcSBCO>FcSB2>FcSB1. Moreover, the fluorescence study illustrates that the three ferrocene-carborane conjugates differently affect the quarterly and tertiary structures as well as the polarity in the surrounding of the Trp and Tyr residues in Hb. Typically, FcSB2 mainly induces alterations of the microenvironment around the β37Trp residue which is located on the α1β2 interface of Hb. Such distinct influences are attributed to the structural features of FcSB1, FcSB2 and FcSBCO containing hydrophobic ferrocenyl and carboranyl units as well as C=O group. Screening the protein-binding behavior can signify the potential bioactivity of such molecules and may be helpful in the future development of promising multifunctional metallodrugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号