首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Using crossed beams of metastable rare gas atoms Rg*(ms3 P 2,3 P 0) (Rg=Ne, Ar, Kr, Xe) and ground state sodium atoms Na(3s 2 S 1/2), we have measured the energy spectra of electrons released in the respective Penning ionization processes at thermal collision energies. For Rg*(3 P 2)+Na(3s), the spectra are quite similar for the different rare gases, both in width and shape; they reflect attractive interactions in the entrance channel with well depthsD* e [meV] decreasing slowly from Rg=Ne to Xe as follows: 676(18); 602(23); 565(26); 555(30). For Rg*(3 P 0)+Na(3s), the spectra vary strongly with the rare gas, indicating a change in the character of the interaction from van der Waals type attraction (Ne) to chemical binding for Kr and Xe with well depthsD* e [meV] of: 51(19); 107(25); 432(30); 530(50). These findings are explained through model calculations of the respective potential curves, in which the exchange and the spin orbit interaction in the excited rare gas and the molecular interaction between the two valences-electrons in terms of suitably chosen singlet and triplet potentials are taken into account. These calculations also explain qualitatively the experimental finding that the ratiosq 2/q 0 of the ionization cross sections for Rg*(3 P 2)+Na and Rg*(3 P 0)+Na vary strongly with the rare gas from Ne to Xe as follows: 15.8(3.2); 2.6(4); 1.4(2); 1.6(4).  相似文献   

2.
We have carried out experimental and theoretical studies of Penning ionization processes occurring in thermal energy collisions of state-selected metastable He*(23 S) and He*(21 S) atoms with ground state alkaline earth atoms X(X=Mg, Ca, Sr, Ba). Penning ionization electron energy spectra for these eight systems, measured with a crossed-beam set-up perpendicular to the collision velocity at energy resolutions 40–70 meV, are reported; relative populations of the different ionic X + (ml) states are presented and well depths D*e for the He*+X entrance channel potentials with uncertainties around 25 meV are derived from the electron spectra as follows: He*(23 S)+Mg/Ca/Sr/Ba: 130/250/240/260 meV; He*(21 S) +Mg/Ca/Sr/Ba: 300/570/550/670 meV. The spectra show substantial differences for the three ionic states X +(2 S), X +(2 P) and X +(2 D) and reveal that transitions to a repulsive potential — attributed to He+X +(2 P)2 Σ formation — are mainly involved for the X +(2 P) channel. Ab initio calculations of potential curves, autoionization widths, electron energy spectra and ionization cross sections are reported for the systems He*(23 S)+Ca and He*(21 S)+Ca. The respective well depths D e * are calculated to be 243(15) meV and 544(15) meV; the ionization cross sections at the experimental mean energy of 72 meV amount to 101 Å2 and 201 Å2, respectively. Very good overall agreement with the experimental electron spectra is observed.  相似文献   

3.
The energy spectra of electrons released in thermal energy (≈ 50 meV) ionizing collisions of He*(21 S, 23 S) with H2 have been measured with high resolution and low background. Based on a detailed data analysis, we report accurate H 2 + (v′) vibrational populationsP(v′) for both He*(21 S)+H2(v′=0–10) and He*(23 S)+H2(v′=0–15) and the spectral shapeS(ε) for the individual vibrational peaks. The vibrational populationsP(v′) are quite similar to the Franck-Condon factorsf v ′0 for unperturbed H2(v″=0)→H 2 + (v′) transitions, but, more in detail, the ratiosP(v′)/f v ′0 show a characteristically differentv′-dependence for He*(23 S), He*(21 S), and HeIα(58.4 nm) ionization. The vibrational level separations in the He*(21 S, 23 S)+H2 spectra agree with those in the HeI photoelectron spectrum to within 1–2 meV. The spectral shapesS(ε) are characteristically different for He*(21 S)+H2 and He*(23 S)+H2, reflecting the respective differences in the entrance channel potentials, as determined previously in ab initio calculations and from scattering experiments.  相似文献   

4.
We report differential cross section measurements with high angular resolution for different channels of the inelastic processes He++Ne→He++Ne* and He++Ne→He*+Ne+, for collision energies between 100 and 200 eV. For the Ne states (2p 53s)1,3 P 1, which decay optically, we determined the fraction with the alignment at right angles to the scattering plane. The results are used to discuss the mechanism of the processes and the influence of the spin-orbit interaction upon the collision.  相似文献   

5.
Experimental angle-dependent electron energy spectra for the autoionization complex Ne*(3s 3 P 2)+H(12 S), leading to Penning and associative ionization, are reported. The data, measured at thermal collision energies (ē rel~51 meV), clearly show an angular variation of the spectral shape, indicating that electrons with angular momentuml>0 participate in the autoionization process. The corresponding non-isotropic electron emission leads to a correlation between the impact parameter-dependent heavy-particle dynamics and the observed electron energy spectrum at a certain detection angle. The experimental results are qualitatively discussed in connection with previous work on the system He*(23 S)+H(12 S). Furthermore, we present quantum mechanical model-calculations for the electron energy spectrum on the basis of available potential data.  相似文献   

6.
We have carried out a comprehensive experimental and theoretical investigation of the autoionizing collision systems He*(23 S, 21 S) + He*(23 S). We present high resolution electron energy spectra, obtained with a single He* beam (average relative collision energy 〈E rel〉=1.6 meV) and with crossed He* beams (〈E rel〉> =61 meV). The spectra show substantial structure, and under single beam conditions fast oscillations due to the interference of incoming and outgoing heavy particle waves in the entrance channels are observed. Accurate ab initio potential curves for the seven lowest He*—He*(Σ) molecular states have been obtained from a Feshbach projection scheme, and width functions for He*(23 S) + He*(23 S) have been derived by Stieltjes imaging. Based on these ab initio data, detailed quantum mechanical calculations of the electron spectra have been carried out and provide a thorough understanding of the experimentally observed spectral features. Good overall agreement of the calculated spectra with the experimental data is observed. The close coincidence in the positions of the experimental and theoretical peaks, especially for He*(23 S) + He*(23 S), underlines the reliability of the ab initio potentials. In the He*(21 S) + He*(23 S) electron spectrum, the dominant peak is traced to be due to autoionization from the 23Σ+ g molecular state accessed via an avoided crossing. We also present a detailed discussion of the total ionization cross sections σtot and of the fraction σAItot for associative ionization together with a critical comparison with previous work. The ionization probabilities for close collisions in entrance channels, from which autoionization is spin-allowed, are near unity, and therefore the absolute values and the collision energy dependence of the total cross sections simply reflect the long-range behaviour of the excited state potentials.  相似文献   

7.
Using crossed beams of ground state alkali atoms A (A = Li, Na, K, Rb, Cs) and metastable He(23 S), He(21 S) atoms, we have measured the energy spectra of electrons resulting in the respective Penning ionization processes at: thermal collision energies. The data are interpreted to yield the well depthD e * of the2Σ interaction potentials as follows: He(23 S)+A:D e * (A=Li)=868(20) meV;D e * (Na)=740(25) meV;D e * (K)=591(24) meV;D e * (Rb)=546(18) meV;D e * (Cs)=533(18) meV. He(21 S)+A:D e * (Li)=330(17) meV;D e * (Na)=277(24) meV;D e * (K)=202(23) meV;D e * (Rb)=219(18) meV;D e * (Cs)=277(18) meV. The well depth for He(23 S)+A(2Σ) is always close to 80% of the well depth for Li(2s)+A(X 1Σ). The ionization cross sections for He(21 S)+A are about 3 to 4 times larger than those for He(23 S)+A.  相似文献   

8.
A crossed beam experiment is used to investigate the Ne*(2p 5 3s,3 P 0, 2) ? H2(1Σ g + ) collision at thermal energy (67 meV). The H2 beam is supersonic, the Ne* beam is thermal. Different collision processes have been analyzed separately by means of a double chopping technique combined with a time of flight measurement. Ions produced by Penning effect and chemi-ionization have been separated from scattered metastable atoms by an accelerating electric field small enough to preserve a reasonable angular resolution: δ?(ions)=±5.5°, δ?(Ne*)=±1°, which allows a determination of differential cross sections. The attenuation method, combined with an absolute measurement of the total H2 flux, has been used to measure the total cross section: σ t =940±220a 0 2 . Differential cross sections have been obtained, in arbitrary but unique unit, for the following processes: (1) elastic collisions, for a mixture (1:3) of para- and ortho-hydrogen; (2) rotationally inelastic collisions:J=0→2; (3) Penning ionization resulting into H 2 + ions; (4) chemiionization yielding NeH+ ions.  相似文献   

9.
Using crossed beams of alkali atoms (Li, Na, K) and state-selected metastable Ne(3s 3 P 2,3 P 0) atoms, we have measured the energy spectra of electrons resulting in the respective Penning ionization processes at thermal collision energies. The spectra are very different for Ne(3 P 2) and Ne(3 P 0): those for Ne(3 P 2) are broad due to a strongly attractive interaction potential with a well depth of 798 (30) meV (Li), 672(20) meV (Na), and 561(20) meV (K), those for Ne(3 P 0) are narrow and compatible with van der Waals type attraction (well depth <50 meV). The Ne(3 P 2) cross section exceeds the one for Ne(3 P 0) by about an order of magnitude.  相似文献   

10.
Potential energies for molecular states dissociating into Ne*(1 P 1,3 P 0,1,2) + He(1 S 0) have been calculated ab initio within the distance range 4–100a 0. The SCF energy (without spin-orbit interaction) is optimized on the lowest3Σ state. After CI, the four Λ-states (1,3Σ,1,3Π)are obtained. They dissociate into Ne*(1,3 P) + He(1 S). All of them are repulsive atR ? 8a 0, they exhibit shallow wells around 12a 0 and have a correct asymptotic behaviour (~ -R ?6). The spin-orbit interaction is introduced, using the Cohen-Schneider scheme, and adiabatic Ω-potentials are derived. The collision at low energy (E ≦ 124 meV) is described in the frame of a fragment-state basis. By means of a deflation procedure, it is shown that states dissociating into Ne*(1 P 1) + He can be eliminated, which lead to a 9 × 9 interaction matrix dynamically equivalent to the original 12 × 12 matrix, in the subspace of interest. Collision channels are defined by angular momenta,J (total),j (of Ne*) andl (of the relative motion). Scattering radial equations are solved by the algorithm of Gordon and theS matrix is derived. Two sets of physically meaningful scattering amplitudes (and differential cross sections) are constructed, referred to the incident axis or to the initial and final directions of the internuclear axis. Polarization effects are discussed. The case of a quantization axis perpendicular to the collision plane is also mentioned.  相似文献   

11.
The selective laser excitation and induced fluorescence observation technique has been used to study rotationally inelastic collisions of I2*(B 0u+, υ = 15,j) with I2, 3He, 4He, Ne, Ar, H2 and D2. For each collision partner, several initial rotational levels ranging from ji = 12 up to ji = 146 have been excited. For purely rotational transfer within the υ = 15 level, our data are perfectly consistent with energy sudden (eventually corrected) scaling laws. Thus, any thermally averaged rate constant, k(jijf), can be expressed as a function of the basis rate constants k(l → 0). Furthermore, these k(l → 0) are found to follow simple empirical fitting laws. Consequently any k(jijf) can be predicted given a set of two or three fitting parameters. Collisions with relatively heavy particles (I2, Ar and Ne) are well described by using the inverse power fitting law k(l → 0) = b[l(l+1)], where b = 1.7, 1.2 and 1.2×10?10 cm3 s?1 and γ = 1.08, 1.02 and 1.17 for I2*-Ne, I2*-Ar and I2*-I2 collisions respectively. For collisions with light particles (3He, 4He, H2 and D2), k(l → 0) shows a sharp decrease with l which can be accounted for by a hybrid power-exponential fitting law k(l → 0) = b[l(l+1)] exp[-l(l+1)/l* (l*+1)], where b = 0.84, 0.71, 2.77 and 2.78×10?10 cm3 s?1l+ = 20.6, 23.1, 18.8 and 31.4, and γ = 0.66, 0.66, 0.78 and 0.91 for I2*-3He, I2*-He, I2*-H2 and I2*-D2 collisions, respectively. We confirm that the rotational transfer dynamics in heavy molecules is mainly governed by angular momentum exchange.  相似文献   

12.
The rate constants 〈σ · υ〉 for collisional de-excitation of the metastable 5D states of Ba+ ions have been determined in an ion trap experiment. TheD-states are selectively populated by pulsed laser excitation of the 6P 1/2 or 6P 3/2 state and the decay at different background pressures is monitored by the change in fluorescence intensity of the excited ions. From the pressure dependence of the decay constants we calculate the de-excitation rate constants for different collision partners, averaged over the velocity distribution of the trapped ion cloud. For He, Ne, H2 and N2 we obtain in the c.m. energy range of 0.1–0.5 eV: 〈σ·υ〉 (He)=3.0±0.2·10?13cm3/s, 〈σ·υ〉 (Ne)=5.1±0.4·10?13cm3/s, 〈σ·υ〉 (H2)=3.7±0.3·10?11cm3/s, 〈σ·υ〉 (N2)=4.4±0.3·10?11cm3/s. The results can be understood qualitatively by a consideration of the ion-atom and ion-molecules interaction potential.  相似文献   

13.
Applying diode-laser resonant fluorescence method, the cross sections for the excitation energy transfer of the collisional process K*(42 P 1/2)+Cs(62 S 1/2)?K*(42 P 3/2)+Cs(62 S 1/2) have been measured. The values we have obtained are σ(1/2→3/2)=77 Å2 and σ(3/2→1/2)=48 Å2. These results complete the sequence of data for the fine-structure mixing of the first-resonance states of alkali atoms colliding with the ground-state caesium atoms.  相似文献   

14.
The method developed by Hennecart and Masnou-Seeuws (1985) for the Ne*+He and Ne*+Ne systems is applied to the calculation of the molecular potential curves of the Ar*+He and Ar*+Ne systems that are correlated to the levels of the 3p 5 4s and 3p 5 4p configurations of the Ar atom. The computed potential curves and dynamical coupling matrix elements are next used in the framework of a two-state quantal calculation to determine the temperature variation of a few population transfer cross sections. A simple interpretation is proposed for Ar*+He and Ne*+He collisions using the Nikitin's exponential model, and it is shown that in many cases the cross sections can be predicted correctly by a two-state model.  相似文献   

15.
We have measured the cusp electron yield in coincidence with the transmitted charge state (He0, He+ and He++) when3He+ collides with He and Ne under single collision conditions. For the first time this enables the electron capture to the continuum (ECC) yield to be directly compared with that from electron loss to continuum (ELC). While the ECC contribution is smaller than that from ELC at high projectile velocities (V p >3 au) the data suggest that ECC will dominate belowV p =2.8 au. The relevance of the results to the projectile velocity dependence of existing capture theories is discussed.  相似文献   

16.
A novel, accurate method for the absolute detection of metastable rare gas atoms is described and demonstrated. It involves a direct in situ determination of the electron emission coefficient γ for impact of the respective metastable atom on a conducting surface. γ is reliably obtained by a cw two-photon ionization — depletion technique: the reduction ΔI S in electron current from the detector surface due to efficient photoionization removal of the metastable flux is compared with the photoelectron current ΔI P (γ = ΔI SI P). The principle of the method, possible realization schemes for the different metastable rare gas atoms and the apparatus are described in detail. The method has been applied so far to metastable Ne* (3s 3 P 2), Ar* (4s 3 P 2), and Kr* (5s 3 P 2) atoms, and corresponding results for γ, obtained with five different chemically clean, polycrystalline surface materials and at two surface temperatures (300 K, 360 K) are reported. Whereas for Ne*, the value of γ (≈0.35) showed only a rather weak dependence on the surface material and temperature (as also found for a mixed He* (23 S, 21 S) beam), strong variations in γ, especially at 300 K, were detected for Ar* and Kr* (values between 0.25 and 0.003). Some applications of the described method, especially with regard to the determination of absolute reaction cross sections involving metastable rare gas atoms, are discussed.  相似文献   

17.
Applying resonant Doppler-free 2-photon laser spectroscopy with thermionic diode detection, the cross sections for the excitation energy transfer of the collisional process7Li*(2P 1/2+Cs(6S 1/2)→7Li*(2P 3/2)+Cs(6S 1/2) have been measured. The experimental cross sections, σLi-Cs (1/2→3/2)=890 Å2 and σLi-Cs (3/2→1/2)=430 Å2, are compared with theoretical data obtained by a sudden impact approximation approach taking into account the long-range interaction potentials only. The calculated cross sections show an excitation mixing process at large internuclear distances where Li-Cs dipole-dipole and dipole-quadrupole interaction forces are predominant.  相似文献   

18.
《Chemical physics》1987,115(3):359-379
The velocity dependence and absolute values of the total ionisation cross section for the molecules H2, N2, O2, NO, CO, N2O, CO2, and CH4 by metastable Ne* (3P0) and Ne* (3P2) atoms at collision energies ranging from 0.06 to 6.0 eV have been measured in a crossed beam experiment. State selection of the two metastable states of Ne* was obtained by optical pumping with a cw dye laser. We observe a strongly different velocity dependence at collision energies below about 1 eV for the ionisation cross section of the systems Ne*H2, N2, CO, and CH4, and the systems Ne*O2, NO, CO2, and N2O, respectively. The first group shows an increasing cross section in this energy range, similar to the Ne*Ar system, while the second group shows a very flat behaviour. This behaviour correlates with the difference in character (π or σb) of the orbital of the electron that is removed from the target molecule. For the molecules H2, N2, CO, and CH4 an electron from a σb orbital is removed from the molecule, whereas for O2, NO, N2O, and CO2 an outer π-ortibal electron is involved. For the systems Ne* (3P0, 3P2)H2 we have derived the imaginary part of the optical potential by assuming a real potential similar to the theoretically calculated ground state NaH2 potential of Botschwina et al. The resonance width Γ(r) as a function of the internuclear distance r shows a saturation at small r (r < 2.8 Å) for both the Ne*(3P0)H2 and the Ne*(3P2)H2 interaction. This supports previous conclusions of Verheijen et al. and Kroon et al. Reliable values for the absolute value of the total ionisation cross section have been obtained by performing a careful calibration of the density—length product of the supersonic secondary beam. The results are in good agreement with the values of West et al. for experiments without state selection. The total ionisation cross sections for molecules with π-type ionisation orbitals, with their larger spatial extent, in general are larger than those for molecules with σb-type ionisation orbitals.  相似文献   

19.
A metastable hydrogen (deuterium) atom source in which groundstate atoms produced by a RF discharge dissociator are bombarded by electrons, provides a relatively large amount of slow metastable atoms (velocity 3–5 km/s). Total integral cross sections for H*(D*)(2s) + H2(X 1Σ g + ,v=0) collisions have been measured in a wide range of relative velocity (2,5–30 km/s), by using the attenuation method. A significant improvement of accuracy is obtained, with respect to previous measurements, at low relative velocities. Total cross sections for H* and D*, as functions of the relative velocity, are different, especially in the low velocity range. H* + H2 total differential cross sections have also been measured, with an angular spread of 3.6°, for two different collision energy distributions, centered respectively at 100 meV and 390 meV. A first attempt of theoretical analysis of the cross sections, by means of an optical potential, is presented.  相似文献   

20.
Electron spectra from He++, He+ and Li+ (10 to 1500 eV) ions colliding under grazing incidence with Li covered W (110) surfaces are reported. The results are compared with those obtained from thermal collisions of (23 S; 21 S) metastable He atoms. In these collisions 1s vacancies are either produced during the collision event (energetic He+ (Li +) collisions) or are brought into the collision (slow He++ (He+, He*) collisions). Population of the 2s orbitals by two electrons produces states which decay by intraatomic Auger processes: we observe autoionization of He** (2s 2) and Li** (1s 2s 2) as well as autodetachment of He?* (1s 2s 2). Alternatively the 1s-holes in the projectile or target (Li) can be filled by Auger processes involving one or two surface electrons. The processes leading to electron emission are studied as a function of the Li coverage in the submonolayer region (0≦ΘLi≦1Ml) and as a function of the projectile energy. It is concluded that with one or two 1s vacancies present in the projectile the double capture of two surface electrons constitutes an important process responsible for electron emission of low work function surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号