首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fragmentation of the small Xen n=2−5 clusters following 70 eV electron impact ionization has been investigated in a size selective experiment and simulated using non-adiabatic dynamics. The experimental results show that the clusters strongly fragment to yield monomer Xe+ (more than 90%) and dimer Xe2+ fragments (the remaining few percent). Trimer Xe3+ fragments first occur from the neutral pentamers Xe5 in a very low yield of approximately 0.3%. The present results are compared with the previous ones for Kr and Ar clusters. It is shown that the Xe and Kr clusters exhibit a qualitatively similar behavior with a strong propensity for monomer fragments, while in the Ar case dimers prevail. The theoretical calculations also reveal a strong fragmentation to the dimer and monomer fragments. However, the dimer Rg2+ is predicted to be the major product for all rare gases (Rg ≡ Ar, Kr, Xe). Possible reasons for the discrepancy between theory and experiment are discussed.  相似文献   

2.
The ionization process of homogeneous and heterogeneous van-der-Waals clusters has been investigated using various ionization methods (electron bombardment, charge exchange, photoionization methods), and different analyzing techniques. Direct and indirect ionization processes can be distinguished in the experiments from the shape of the ionization curve which depends on the type of cluster. These features appear differently in homogeneous and heterogeneous systems: Homogeneous systems exhibit characteristic ionization efficiency curves where the direct ionization path appears as a sudden increase in the ionization efficiency while the indirect transition gives rise to a long drawn out tail extending to the true ionization threshold. In heterogeneous clusters the indirect ionization path proceeds via excited states of the component with the larger ionization potential and subsequent energy transfer to the other component. These transitions are shifted and broadened depending on the type of internal interaction. Conclusions are drawn concerning the geometry and the interaction potential inside the cluster. The resolution of the TEPICO (Threshold Electron Photo Ion Coincidence) experiments makes it possible to determine the kinetic energy release of the fragments. It is shown that the results are related to the stabilities of the cluster ions involved in the fragmentation chain. Results are presented for pure rare gas clusters (Ar n , Kr n , Xe n ) and for mixed systems (Ar n O2m , Ar n Xe, Kr n Xe, (CH4) n Ne).  相似文献   

3.
Mixed ionized clusters have been produced in a supersonic nozzle beam experiment by attachment of stagnant cations (i.e. NO+ and Xe+) to neutral van der Waals clusters (i.e.Ar n ) within a Nier type ion source. This new ionization technique leads to less fragmentation than electron impact ionization and the measured cluster distributions exhibit icosahedral shell and subshell closures which have not been detected in the case of electron impact of Ar n -clusters ionization so far. Additionally, the obtained appearance energies and metastable fractions give insight into the production mechanism and the stability of the resulting ions.  相似文献   

4.
Picosecond multiphoton ionization of (NO)mArn clusters produced in a supersonic expansion of NO/Ar gas mixtures has been studied using time-of-flight mass spectrometry. Two-photon ionization with 266 nm photons show that dilute gas mixtures (1% NO/Ar) yield clusters limited to m≤7, but with as many as 37 argon atoms. Magic numbers are observed for NO+Ar12, NO+Ar18, (NO) 2 + Ar17, NO+Ar22, and (NO) 2 + Ar21 and are understood in terms of solvation of the NO+ and (NO) 2 + by argon in icosahedral arrangements. Four-photon ionization with 532 nm light produces dissociation of the clusters to yield only NO+Arn with n up to 54. This distribution exhibits an additional magic number at n=54, consistent with the completion of a second solvation sphere about the NO+. The known wavelength dependence for photodissociation of (NO) 2 + and (NO) 3 + and comparison of MPI spectra obtained with 266, 355, and 532 nm light indicate that the dissociation is occurring in the cluster ions.  相似文献   

5.
Metastable decay of cluster ions has been discovered only recently. It was noted that one has to take this metastable decay into account when using mass spectrometry to probe neutral clusters, because ion abundance anomalies in mass spectra of rare gas and molecular clusters are caused by delayed metastable evaporation of monomers following ion production. Moreover, it was found that(i) the individual metastable reaction rates k depend strongly on cluster size and cluster ion production pathways and that(ii) there exists experimental evidence (k=k(t)) and a theoretical prediction that a given mass selected cluster ion generated by electron impact ionization of a nozzle expansion beam will comprise a range of metastable decay rates. In addition, it was discovered that metastable Ar cluster ions which lose two monomers in the μs time regime decay via sequential decay series Ar n + *→Ar n?1 + *→Ar n?2 + * with cluster sizes 7≤n≤10 andn=3 (similar results were obtained recently in case of N2 cluster ions). Conversely, the dominant metastable decay channel of Ar 4 + * into Ar 2 + was found to proceed predominantly via a single step fissioning process.  相似文献   

6.
In this note we prey300505 sent the results of a calculation of the adiabatic electrostatic polarization energy, P+, of Xe+ in fluid Ar over the density range 0.1–1.4 g cm?3. P+ was expressed in terms of Lekner's screening function which, within the framework of the Kirkwood approximation, is determined by the (neutral) solute-solvent and the solvent-solvent pair correlation functions. The density dependence of P+ can be quite well approximated (within ≈10%) by the Born charging energy with the effective ionic radius being identified with the effective hard-core diameter for the (neutral) solute-solvent separation. The P+ data, together with experimental spectroscope results for the density dependence of the ionization potential of Xe and of CH3I, result in preliminary information concerning the ground state energy of the quasi-free electron in fluid Ar over a wide density range.  相似文献   

7.
We report infrared photodissociation spectra for Ne, Ar, Kr, N2 and CH4 clusters which contain CH3F chromophores. The CH3Fv 3 mode is excited with a line tunable CO2 laser. Mass spectrometer detection of changes in the cluster beam intensity serve to partially distinguish the spectra of different size neutral clusters. Many spectra consist of rather broad, inhomogeneous profiles. For intermediate size ArnCH3F clusters a sharp, narrow peak is observed in the spectrum. We assign this peak as due to a cluster in which a central CH3F molecule is surrounded by at least a full shell of Ar atoms packed in a contracted icosohedral geometry. Because the Ar atoms in a gas phase cluster are unconstrained by an extended crystalline structure, the CH3F dipole is more fully stabilized (and thus red-shifted) than in a solid matrix. The dependence of the observed spectrum on cluster size is discussed. For comparison, no comparable narrow spectral features are observed in ArnC2H4 cluster spectra. Clear evidence is also presented that the fragmentation of the neutral clusters upon electron impact ionization is fairly specific. Finally, we note that ionization of ArnCH3F clusters sometimes produces ArnF+ ions. This is a fragmentation process which does not occur in free CH3F.  相似文献   

8.
Manganese cluster ions Mn k + (k?60) have been produced by 7 keV Xe ion bombardment and analyzed by a double-focusing mass spectrometer. Discontinuous variations of intensity are found atk=5, 14, 16, 29, 34, 45 and 54. Most of these magic numbers coincide with or differ by only one from those observed in Ar k + . The similarity in magic numbers between Mn k + and Ar k + indicates that the bonding nature in the charged Mn clusters is similar to that in the charged Ar clusters; The polarization force between a positive ion in the center of a cluster and surrounding neutral atoms is dominant binding force.  相似文献   

9.
《Chemical physics》2003,286(2-3):237-248
Dissociation energies as well as electronic and geometric structure of singly charged xenon cluster cations, Xen+ (n=3–35), are calculated using the extended diatomics-in-molecules method (including the spin–orbit coupling and the most important ionic and neutral three-body interactions) and the state-of-the-art ab initio diatomic curves for Xe2+ due to Paidarová and Gadéa [Chem. Phys. 274 (2001) 1]. Cluster growth of Xen+ and size dependence of the positive charge delocalization are discussed. The calculated dissociation energies are used to estimate the evaporation energies for Xen+→Xen−1++Xe and to study the stability of the Xen+ clusters. The results obtained are compared with available experimental and theoretical data.  相似文献   

10.
The method of diatomics-in-molecules (DIM) is applied to the calculation of the energy of the homogeneous noble-gas ionic clusters Ar n + and Xe n + forn=3, 4, ..., 22. The trimers are stable symmetric linear molecules exhibiting chemical binding, a result in agreement both with ab initio calculations and with previous DIM work. The clusters up ton=13 are best described as a trimer ion surrounded by neutrals, whereby the charge distribution changes slightly with increasingn. Both noble gases exhibit a special stability associated with the completion of the first shell of neutral atoms atn=13. Asn increases from 13 to 22, there is a greater delocalization of the positive charge, the central ion tending to become a linear tetramer, symmetric for Xe and unsymmetric for Ar. Energies of the excited electronic states are reported and the possibility of developing simpler DIM models for the clusters and for mixed noble gases is discussed.  相似文献   

11.
Survivor-ion mass spectrometry is used to distinguish stereoisomeric cis- and trans-4-methylcyclohexanol. The method involves producing ions by electron impact ionization and submitting them without mass selection to collisional neutralization and reionization, followed by selective monitoring of non-dissociating ions. The differences in the electron impact mass spectra of the stereoisomers, due to the different fragment ion elemental compositions and structures, are highlighted by collisional neutralization with Xe, NO and CH3SSCH3, followed by reionization with oxygen. The differences in the survivor-ion spectra are due to different neutralization efficiencies of the isobaric and isomeric ions produced by electron impact ionization, different stabilities of the intermediate neutral species, different reionization efficiencies and reionized ion stabilities. Neutralization-reionization spectra of the C7H12+., C6H9+, C3H6O+. and C3H5O+ ions from stereoisomeric 4-methylcyclohexanols are also reported.  相似文献   

12.
The interaction of Aun+ (n ≤ 20) clusters with Ar is investigated by combining mass spectrometric experiments and density functional theory calculations. We show that the inert Ar atom forms relatively strong bonds with Aun+. The strength of the bond strongly varies with the cluster size and is governed by a fine interplay between geometry and electronic structure. The chemical bond between Aun+ and Ar involves electron transfer from Ar to Au, and a stronger interaction is found when the Au adsorption site has a higher positive partial charge, which depends on the cluster geometry. Au15+ is a peculiar cluster size, which stands out for its much stronger interaction with Ar than its neighbors, signaled by a higher abundance in mass spectra and a larger Ar adsorption energy. This is shown to be a consequence of a low-coordinated Au adsorption site in Au15+, which possesses a large positive partial charge.  相似文献   

13.
The formation of Ar 2 + ions has been investigated by means of the threshold photoelectron photoion coincidence (TPEPICO) technique. Two pathways for the formation of Ar 2 + ions are important. One is a direct path via excitation of Rydberg states of Ar2 with consecutive autoionization. The other path is dissociative ionization of larger argon clusters, in this case argon trimers. These two pathways lead to Ar 2 + ions with different internal energy. The pathways are easily distinguished in the TPEPICO-TOF spectra by the kinetic energy released (KER) in the dissociative ionization. The KER for the reaction Ar 3 + → Ar 2 + + Ar was measured as a function of the photon energy and compared to the KER expected from statistical theory. The agreement is satisfying and confirms that Ar 3 + ions do indeed dissociate at the thermochemical threshold. At higher photon energy the excited2Π(3/2)g state of Ar 3 + is also detected from a second component in the KER. By applying a kinetic energy discrimination it is possible to measure cluster ion spectra in the presence of larger clusters but essentially without interference from the latter.  相似文献   

14.
Xenon is added to the axial channel of an argon inductively coupled plasma (ICP) at doses up to 1.5% of the aerosol gas flow. Emission is collected from the gas flowing into the sampling orifice of a mass spectrometer (MS). These Xe doses have little effect on the electron density ne or on the intensities of Fe (I) emission lines. Certain Fe (II) lines are enhanced when Xe is added, particularly those from Fe+ states that can be populated by near-resonant charge transfer between Xe and neutral Fe. Calculations based on measured values of ne indicate that Xe+ should be present at densities of up to 7 × 1014 cm−1, which should be sufficient Xe+ to drive the proposed charge transfer reactions.  相似文献   

15.
The mass spectra of Xe n + clusters (n=2–13) were recorded using a supersonic beam and an ion time-of-flight mass analyser. The yield of Xe 2 + , Xe 3 + and Xe 4 + cluster ions was measured with a resolution of 0.1 Å (1 meV) in the 1024–1113 Å (11.1–12.1 eV) region. Autoionizing Rydberg series of Xe2 converging to theC 23/2u state of Xe 2 + were observed in the spectrum of Xe 2 + . The photoionization yield of Xe 3 + and Xe 4 + ions each displayed similar broad features that contained no fine structure corresponding to vibrational states. The broad features were assigned to autoionizing Rydberg series by analogy with the dimer ion spectrum.  相似文献   

16.
A size‐selected argon (Ar) gas‐cluster ion beam (GCIB) was applied to the secondary ion mass spectrometry (SIMS) of a 1,4‐didodecylbenzene (DDB) thin film. The samples were also analyzed by SIMS using an atomic Ar+ ion projectile and X‐ray photoelectron spectroscopy (XPS). Compared with those in the atomic‐Ar+ SIMS spectrum, the fragment species, including siloxane contaminants present on the sample surface, were enhanced several hundred times in the Ar gas‐cluster SIMS spectrum. XPS spectra during beam irradiation indicate that the Ar GCIB sputters contaminants on the surface more effectively than the atomic Ar+ ion beam. These results indicate that a large gas‐cluster projectile can sputter a much shallower volume of organic material than small projectiles, resulting in an extremely surface‐sensitive analysis of organic thin films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Secondary ion mass spectra obtained by [Xe]+ bombardment are compared with those obtained by [Ar]+ bombardment. Although [Ar]+ ions are commonly used as primary ions in secondary ion mass spectrometry for organic compounds, [Xe]+ ions seem better as primary ions because they give a larger sputtering yield for a metal substrate than [Ar]+ ions. Cationized molecular intensities of sucrose, raffinose and stachyose, and quasimolecular ion intensities of tuftsin and eledoisin related peptide are investigated using [Xe]+ and [Ar]+ bombardments. The observed molecular species are 2–4 times more intense for [Xe]+ bombardment than for [Ar]+ bombardment, although the secondary ion mass spectra are almost the same in both cases.  相似文献   

18.
Photoionization mass spectrometer techniques have been employed to study the charge transfer reactions: Xe+ + O2 → O+2 + Xe and O+2 + Xe → Xe+ + O2. The results show the reaction of Xe+(2P32) ions with O2 molecules is much more efficient than the reaction of Xe+(2P12) ions with O2 molecules. The charge transfer reaction of O+2 ions with Xe atoms was detected for O+2 ions in the a 4Πu state.  相似文献   

19.
Silver clusters are generated by standard laser vaporization technique and ionized via multiphoton ionization. Time-of-flight mass spectrometry reveals singly, doubly and triply charged clusters, Ag n z+ (z=1,2,3). The spectra show, for all charge states, intensity variations, indicating enhanced stabilities for cluster sizes with closed electronic configurations in accord with the spherical jellium model.  相似文献   

20.
We report an experimental study of Xe(3P1) → Xe(3P2) electronic quenching by Ar in Xe/Ar mixtures optically excited by the 1470 Å line of Xe. The quenching process was monitored by the observation of the Xe*2 second emission continuum at low Xe pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号