首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We establish the existence of at least three positive solutions for the second-order three-point discrete boundary value problem: $$\Delta ^{2}y(k-1)+f(k,y(k))=0,\quad k\in \{1,\ldots ,T\},$$ $$y(0)=0,\quad y(T+1)=\alpha y(n),$$ where f is continuous, T≥3 and n∈{2,…,T?1} are two fixed positive integers, constant α>0 such that α n<T+1. Under suitable conditions, we accomplish this by using the property of the associate Green’s function and Leggett-Williams fixed point theorem.  相似文献   

2.
Let $\gamma ,\delta \in \mathbb{R}^n $ with $\gamma _j ,\delta _j \in \{ 0,1\} $ . A comparison pair for a system of equations fi(u1,…,un)=0 (i=1,…,n) is a pair of vectors $v,w \in \mathbb{R}^n ,v \leqslant w$ , such that $$\begin{array}{*{20}c} {\gamma _i f_i (u_1 , \ldots ,u_{i - 1} ,v_i ,u_i + 1, \ldots ,u_n ) \leqslant 0,} \\ {\delta _i f_i (u_1 , \ldots ,u_{i - 1} ,w_i ,u_i + 1, \ldots ,u_n ) \geqslant 0} \\ \end{array} $$ for $\gamma _j u_j \geqslant v_j ,\delta _j u_j \leqslant w_j (j = 1, \ldots ,n)$ . The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.  相似文献   

3.
This paper is concerned with power concavity properties of the solution to the parabolic boundary value problem $$\begin{aligned} (P)\quad \left\{ \begin{array}{l@{\quad }l} \partial _t u=\varDelta u +f(x,t,u,\nabla u) &{} \text{ in }\quad \varOmega \times (0,\infty ),\\ u(x,t)=0 &{} \text{ on }\quad \partial \varOmega \times (0,\infty ),\\ u(x,0)=0 &{} \text{ in }\quad \varOmega , \end{array} \right. \end{aligned}$$ where $\varOmega $ is a bounded convex domain in $\mathbf{R}^n$ and $f$ is a nonnegative continuous function in $\varOmega \times (0,\infty )\times \mathbf{R}\times \mathbf{R}^n$ . We give a sufficient condition for the solution of $(P)$ to be parabolically power concave in $\overline{\varOmega }\times [0,\infty )$ .  相似文献   

4.
Some results of existence of positive solutions for singular boundary value problem $$\left\{\begin{array}{l}\displaystyle (-1)^{m}u^{(2m)}(t)=p(t)f(u(t)),\quad t\in(0,1),\\[2mm]\displaystyle u^{(i)}(0)=u^{(i)}(1)=0,\quad i=0,\ldots,m-1,\end{array}\right.$$ are given, where the function p(t) may be singular at t=0,1. Our analysis relies on the variational method.  相似文献   

5.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

6.
In this paper we consider a class of gradient systems of type $$\begin{array}{ll} -c_{i} \Delta u_{i} + V_{i}(x)u_{i} = P_{u_i}(u),\qquad u_{1}, \ldots, u_{k} >\; 0\; \text{in}\; \Omega,\\ \quad u_{1} = \cdots = u_{k} = 0 \text{ on } \partial \Omega, \end{array}$$ in a bounded domain ${\Omega \subseteq \mathbb{R}^N}$ . Under suitable assumptions on V i and P, we prove the existence of ground-state solutions for this problem. Moreover, for k = 2, assuming that the domain Ω and the potentials V i are radially symmetric, we prove that the ground state solutions are foliated Schwarz symmetric with respect to antipodal points. We provide several examples for our abstract framework.  相似文献   

7.
In this paper we study the system $$\begin{aligned}&\min \biggl \{-\mathcal H u_i(x,t)-\psi _i(x,t),u_i(x,t)-\max _{j\ne i}(-c_{i,j}(x,t)+u_j(x,t))\biggr \}=0,\\&u_i(x,T)=g_i(x),\ i\in \{1,\ldots ,d\}, \end{aligned}$$ where \((x,t)\in \mathbb R ^{N}\times [0,T]\) . A special case of this type of system of variational inequalities with terminal data occurs in the context of optimal switching problems. We establish a general comparison principle for viscosity sub- and supersolutions to the system under mild regularity, growth, and structural assumptions on the data, i.e., on the operator \(\mathcal H \) and on continuous functions \(\psi _i\) , \(c_{i,j}\) , and \(g_i\) . A key aspect is that we make no sign assumption on the switching costs \(\{c_{i,j}\}\) and that \(c_{i,j}\) is allowed to depend on \(x\) as well as \(t\) . Using the comparison principle, the existence of a unique viscosity solution \((u_1,\ldots ,u_d)\) to the system is constructed as the limit of an increasing sequence of solutions to associated obstacle problems. Having settled the existence and uniqueness, we subsequently focus on regularity of \((u_1,\ldots ,u_d)\) beyond continuity. In this context, in particular, we assume that \(\mathcal H \) belongs to a class of second-order differential operators of Kolmogorov type of the form: $$\begin{aligned} \mathcal H =\sum _{i,j=1}^m a_{i,j}(x,t)\partial _{x_i x_j}+\sum _{i=1}^m a_i(x,t)\partial _{x_i} +\sum _{i,j=1}^N b_{i,j}x_i\partial _{x_j}+\partial _t, \end{aligned}$$ where \(1\le m\le N\) . The matrix \(\{a_{i,j}(x,t)\}_{i,j=1,\ldots ,m}\) is assumed to be symmetric and uniformly positive definite in \(\mathbb R ^m\) . In particular, uniform ellipticity is only assumed in the first \(m\) coordinate directions, and hence, \(\mathcal H \) may be degenerate.  相似文献   

8.
9.
In this paper, the authors obtain the existence of infinitely many classical solutions to the boundary value system with Sturm–Liouville boundary conditions $$\left\{\begin{array}{ll}-(\phi_{p_i}(u_{i}^\prime))^\prime = \lambda F_{u_{i}}(x,u_{1},\ldots,u_{n})h_{i}(u^\prime_i)\quad {\rm in} \, (a,b), \\ \alpha_iu_{i}(a)-\beta_iu^ \prime_{i}(a)=0, \quad \gamma_iu_{i}(b)+\sigma_iu^\prime_{i}(b)=0, \end{array}\quad{i = 1, \ldots , n.} \right.$$ Critical point theory and Ricceri’s variational principle are used in the proofs.  相似文献   

10.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   

11.
We consider the following system of integral equations $$u_i(t)=\int^1_0g_i(t,s)f(s,u_1(s),u_2(s),\cdots,u_n(s))ds,\quad t\in \lbrack 0,1\rbrack,1\leq i\leq n.$$ Our aim is to establish criteria such that the above system has a constant-sign solution (u1, u2, …, u n) ∈ (Lp[0, 1])n, where the integer 1 ≤ p < ∞ is fixed. We shall tackle the case when f is ‘nonnegative’ as well as the case when f is ‘semipositone’. The above problem is also extended to that on the half-line [0, ∞) $$u_i(t)=\int^1_0g_i(t,s)f(s,u_1(s),u_2(s),\cdots,u_n(s))ds,\quad t\in \lbrack 0,\infty ),1\leq i\leq n.$$   相似文献   

12.
Изучается ограничен ность псевдодиффере нциальных операторов на \(L^2 (R^n )\) и на пр остранствах Харди в \(R^n \) . Пусть \(D_k = \{ \xi \in R^n :2^{k - 1} \leqq \left| \xi \right|< 2^k \} , k = 1,2,3, \ldots ,\) и \(D_0 = \{ \xi \in R^n :\left| \xi \right|< 1\} \) . Псевдодиффер енциальный операторP с символом p определяется соотно шением $$Pf(x) = \int\limits_{R^n } {e^{ix \cdot \xi } p(x,\xi )\hat f(\xi )d\xi ,x \in R^n .} $$ Будем говорить, что p пр инадлежит классу \(\bar S_{\varrho ,} {}_\delta (M,N), 0 \leqq \delta ,\varrho \leqq 1\) , ес ли $$\left| {D_x^a p(x,\xi )} \right| \leqq C_a (1 + \left| \xi \right|)^{\delta \left| a \right|} , x,\xi \in R^n ,\left| a \right| \leqq M,$$ и $$\int\limits_{D_k } {\left| {D_x^a D_\xi ^\beta p(x,\xi )} \right|d\xi \leqq C_{a\beta } 2^{kn} 2^{k(\delta |a| - \varrho |\beta |)} , x} \in R^n , k = 0,1,2, \ldots ;|a| \leqq M, |\beta | \leqq N.$$ Изучаются условия, ко торым должны удовлет ворять ?. δ,M иN, чтобы для каждого символа \(p \in \bar S_\varrho , {}_\delta (M,N)\) соответствующий оп ераторP был ограниче н на \(L^2 (R^n )\) . Далее, пусть \(p \in S_\varrho , {}_\delta \) , если дл я всех мультииндексо в а и β выполнено условие $$|D_x^a D_\xi ^\beta p(x,\xi )| \leqq C_{a\beta } (1 + |\xi |)^{\delta |\alpha | - \varrho |\beta |} , x,\xi \in R^n .$$ Доказывается, что при 0≦δ<1 операторP отображ ает пространство Харди \(H^p (R^n )\) в локальное пространство Харди ? p , если символp принадл ежит классуS 1, δ.  相似文献   

13.
Let ${\Phi_0(\boldmath{z})}$ be the function defined by $$\Phi_0({\boldmath z}) = \Phi _{0}(z_1,\ldots, z_m)=\sum_{k\geq 0}\frac{E_k(z_1^{r^k},\ldots,z_m^{r^k})}{F_k(z_1^{r^k},\ldots,z_m^{r^k})},$$ where ${E_k(\boldmath{z})}$ and ${F_k(\boldmath{z})}$ are polynomials in m variables ${\boldmath{z} = (z_1,\ldots, z_m)}$ with coefficients satisfying a weak growth condition and r ≥ 2 a fixed integer. For an algebraic point ${\boldmath{\alpha}}$ satisfying some conditions, we prove that ${\Phi_{0}(\boldmath{\alpha})}$ is algebraic if and only if ${\Phi_{0}(\boldmath{z})}$ is a rational function. This is a generalization of the transcendence criterion of Duverney and Nishioka in one variable case. As applications, we give some examples of transcendental numbers.  相似文献   

14.
Consider the nonlinear heat equation $$v_t -\Delta v=|v|^{p-1}v \qquad \qquad \qquad (NLH)$$ in the unit ball of \({\mathbb{R}^2}\) , with Dirichlet boundary condition. Let \({u_{p,\mathcal{K}}}\) be a radially symmetric, sign-changing stationary solution having a fixed number \({\mathcal{K}}\) of nodal regions. We prove that the solution of (NLH) with initial value \({\lambda u_{p,\mathcal{K}}}\) blows up in finite time if |λ ?1| > 0 is sufficiently small and if p is sufficiently large. The proof is based on the analysis of the asymptotic behavior of \({u_{p,\mathcal{K}}}\) and of the linearized operator \({L= -\Delta - p | u_{p,\mathcal{K}} | ^{p-1}}\) .  相似文献   

15.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

16.
We are concerned with the existence and multiplicity of positive solutions for the system of nonlinear singular Hammerstein integral equations $$u_i(t)=\int_a^bk_i(t,s)g_i(s)f_i(s,u_1(s),\ldots,u_n(s)) {\rm d} s,\quad i=1,2,\ldots,n.$$ We use fixed point index theory to establish our main results based on a priori estimates achieved by utilizing nonnegative matrices. As applications, the main results are applied to establish the existence and multiplicity of positive solutions for an elliptic system in an annulus.  相似文献   

17.
I show that in order to solve the functional equation $$F_{1}(x+y,z)+F_{2}(y+z,x)F_{3}(z+x,\ y)+F_{4}(x,y)+F_{5}(y,z)+F_{6}(z,x)=0$$ for six unknown functions (x,y,z are elements of an abelian monoid, and the codomain of each F j is the same divisible abelian group) it is necessary and sufficient to solve each of the following equations in a single unknown function $$\matrix{\quad\quad\quad\quad\quad\quad\quad \quad\quad\quad\quad\quad\quad G(x+y,\ z)- G(x,z)- G(y,z)=G(y+z,x)- G(y,x)- G(z,x)\cr \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad H(x+y,\ z)- H(x,z)- H(y,x)+H(y+z,\ x)- H(y,x)- H(z,x)\cr +H(z+x,\ y)- H(z,y)- H(x,y)=0.}$$   相似文献   

18.
We consider degenerate parabolic equations of the form $$\left. \begin{array}{ll}\,\,\, \partial_t u = \Delta_\lambda u + f(u) \\u|_{\partial\Omega} = 0, u|_{t=0} = u_0\end{array}\right.$$ in a bounded domain ${\Omega\subset\mathbb{R}^N}$ , where Δλ is a subelliptic operator of the type $$\quad \Delta_\lambda:= \sum_{i=1}^{N} \partial_{x_i}(\lambda_{i}^{2} \partial_{x_i}),\qquad \lambda = (\lambda_1,\ldots, \lambda_N).$$ We prove global existence of solutions and characterize their longtime behavior. In particular, we show the existence and finite fractal dimension of the global attractor of the generated semigroup and the convergence of solutions to an equilibrium solution when time tends to infinity.  相似文献   

19.
Let G be a homogeneous group, and let X 1, X 2, … , X m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: $$\left\{\begin{array}{ll}-\sum_{j=1}^{m}X_j^2u(x)-\frac{a}{\|x\|^\nu}u(x)=u^{\frac{Q+2}{Q-2}}(x), x\in\Omega,\\ u(x)=0, \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, x\in \partial\Omega,\end{array}\right.$$ where ${\Omega\subset G}$ is a bounded domain with smooth boundary and ${\mathbf{0}\in\Omega}$ , Q is the homogeneous dimension of G, ${a\in \mathbb{R},\ \nu <2 }$ . We boost u to ${L^p(\Omega)}$ for any ${1\leq p < \infty}$ if ${u\in S^{1,2}_0(\Omega)}$ is a weak solution of the problem above.  相似文献   

20.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号