首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Let P(G,λ) be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted G~H, if P(G,λ)=P (H,λ). We write [G]={H|H~G}. If[G]={G}, then G is said to be chromatically unique. In this paper, we first characterize certain complete 6-partite graphs with 6n+1 vertices according to the number of 7-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted are obtained.  相似文献   

2.
For a graph G,P(G,λ)denotes the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent,denoted by G-H,if P(G,λ)=p(H,λ). Let[G]= {H|H-G}. If [G]={G},then G is said to be chromatically unique. For a complete 5-partite graph G with 5n vertices, define θ(G)=(a(G,6)-2^n 1-2^n-1 5)/2n-2,where a(G,6) denotes the number of 6-independent partitions of G. In this paper, the authors show that θ(G)≥0 and determine all graphs with θ(G)= 0, 1, 2, 5/2, 7/2, 4, 17/4. By using these results the chromaticity of 5-partite graphs of the form G-S with θ(G)=0,1,2,5/2,7/2,4,17/4 is investigated,where S is a set of edges of G. Many new chromatically unique 5-partite graphs are obtained.  相似文献   

3.
G.C. Lau  Y.H. Peng 《Discrete Mathematics》2009,309(12):4089-4094
Let P(G,λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P(H,λ)=P(G,λ) implies H is isomorphic to G. For integers k≥0, t≥2, denote by K((t−1)×p,p+k) the complete t-partite graph that has t−1 partite sets of size p and one partite set of size p+k. Let K(s,t,p,k) be the set of graphs obtained from K((t−1)×p,p+k) by adding a set S of s edges to the partite set of size p+k such that 〈S〉 is bipartite. If s=1, denote the only graph in K(s,t,p,k) by K+((t−1)×p,p+k). In this paper, we shall prove that for k=0,1 and p+ks+2, each graph GK(s,t,p,k) is chromatically unique if and only if 〈S〉 is a chromatically unique graph that has no cut-vertex. As a direct consequence, the graph K+((t−1)×p,p+k) is chromatically unique for k=0,1 and p+k≥3.  相似文献   

4.
Let P(G, λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P(H, λ) = P(G, λ) implies H is isomorphic to G. Liu et al. [Liu, R. Y., Zhao, H. X., Ye, C. F.: A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs. Discrete Math., 289, 175–179 (2004)], and Lau and Peng [Lau, G. C., Peng, Y. H.: Chromatic uniqueness of certain complete t-partite graphs. Ars Comb., 92, 353–376 (2009)] show that K(p − k, p − i, p) for i = 0, 1 are chromatically unique if pk + 2 ≥ 4. In this paper, we show that if 2 ≤ i ≤ 4, the complete tripartite graph K(p − k, p − i, p) is chromatically unique for integers ki and pk 2/4 + i + 1.  相似文献   

5.
Let F(n,e) be the collection of all simple graphs with n vertices and e edges, and for GF(n,e) let P(G;λ) be the chromatic polynomial of G. A graph GF(n,e) is said to be optimal if another graph HF(n,e) does not exist with P(H;λ)?P(G;λ) for all λ, with strict inequality holding for some λ. In this paper we derive necessary conditions for bipartite graphs to be optimal, and show that, contrarily to the case of lower bounds, one can find values of n and e for which optimal graphs are not unique. We also derive necessary conditions for bipartite graphs to have the greatest number of cycles of length 4.  相似文献   

6.
G.C. Lau  Y.H. Peng 《Discrete Mathematics》2006,306(22):2893-2900
For a graph G, let P(G) be its chromatic polynomial. Two graphs G and H are chromatically equivalent if P(G)=P(H). A graph G is chromatically unique if P(H)=P(G) implies that HG. In this paper, we classify the chromatic classes of graphs obtained from K2,2,2Pm(m?3), (K2,2,2-e)∪Pm(m?5) and (K2,2,2-2e)∪Pm(m?6) by identifying the end-vertices of the path Pm with any two vertices of K2,2,2, K2,2,2-e and K2,2,2-2e, respectively, where e and 2e are, respectively, an edge and any two edges of K2,2,2. As a by-product of this, we obtain some families of chromatically unique and chromatically equivalent classes of graphs.  相似文献   

7.
The least eigenvalue of the 0-1 adjacency matrix of a graph is denoted λ G. In this paper all graphs with λ(G) greater than ?2 are characterized. Such a graph is a generalized line graph of the form L(T;1,0,…,0), L(T), L(H), where T is a tree and H is unicyclic with an odd cycle, or is one of 573 graphs that arise from the root system E8. If G is regular with λ(G)>?2, then Gis a clique or an odd circuit. These characterizations are used for embedding problems; λR(H) = sup{λ(G)z.sfnc;HinG; Gregular}. H is an odd circuit, a path, or a complete graph iff λR(H)> ?2. For any other line graph H, λR(H) = ?2. A similar result holds for complete multipartite graphs.  相似文献   

8.
Jun-Jie Pan 《Discrete Mathematics》2006,306(17):2091-2096
An isometric path between two vertices in a graph G is a shortest path joining them. The isometric path number of G, denoted by ip(G), is the minimum number of isometric paths needed to cover all vertices of G. In this paper, we determine exact values of isometric path numbers of complete r-partite graphs and Cartesian products of 2 or 3 complete graphs.  相似文献   

9.
A graph G is m-partite if its points can be partitioned into m subsets V1,…,Vm such that every line joins a point in Vi with a point in Vj, ij. A complete m-partite graph contains every line joining Vi with Vj. A complete graph Kp has every pair of its p points adjacent. The nth interchange graph In(G) of G is a graph whose points can be identified with the Kn+1's of G such that two points are adjacent whenever the corresponding Kn+1's have a Kn in common.Interchange graphs of complete 2-partite and 3-partite graphs have been characterized, but interchange graphs of complete m-partite graphs for m > 3 do not seem to have been investigated. The main result of this paper is two characterizations of interchange graphs of complete m-partite graphs for m ≥ 2.  相似文献   

10.
For two vertices u and v in a strong digraph D, the strong distance sd(u,v) between u and v is the minimum size (the number of arcs) of a strong sub-digraph of D containing u and v. For a vertex v of D, the strong eccentricity se(v) is the strong distance between v and a vertex farthest from v. The strong radius srad(D) (resp. strong diameter sdiam(D)) is the minimum (resp. maximum) strong eccentricity among the vertices of D. The lower (resp. upper) orientable strong radius srad(G) (resp. SRAD(G)) of a graph G is the minimum (resp. maximum) strong radius over all strong orientations of G. The lower (resp. upper) orientable strong diameter sdiam(G) (resp. SDIAM(G)) of a graph G is the minimum (resp. maximum) strong diameter over all strong orientations of G. In this paper, we determine the lower orientable strong radius and diameter of complete k-partite graphs, and give the upper orientable strong diameter and the bounds on the upper orientable strong radius of complete k-partite graphs. We also find an error about the lower orientable strong diameter of complete bipartite graph Km,n given in [Y.-L. Lai, F.-H. Chiang, C.-H. Lin, T.-C. Yu, Strong distance of complete bipartite graphs, The 19th Workshop on Combinatorial Mathematics and Computation Theory, 2002, pp. 12-16], and give a rigorous proof of a revised conclusion about sdiam(Km,n).  相似文献   

11.
We introduce a new invariant, the coronal of a graph, and use it to compute the spectrum of the corona G°H of two graphs G and H. In particular, we show that this spectrum is completely determined by the spectra of G and H and the coronal of H. Previous work has computed the spectrum of a corona only in the case that H is regular. We then explicitly compute the coronals for several families of graphs, including regular graphs, complete n-partite graphs, and paths. Finally, we use the corona construction to generate many infinite families of pairs of cospectral graphs.  相似文献   

12.
For a graph G, let g(G) and σg(G) denote, respectively, the girth of G and the number of cycles of length g(G) in G. In this paper, we first obtain an upper bound for σg(G) and determine the structure of a 2-connected graph G when σg(G) attains the bound. These extremal graphs are then more-or-less classified, but one case leads to an unsolved problem. The structural results are finally applied to show that certain families of graphs are chromatically unique.  相似文献   

13.
A graph H is said to be light in a family H of graphs if each graph GH containing a subgraph isomorphic to H contains also an isomorphic copy of H such that each its vertex has the degree (in G) bounded above by a finite number φ(H,H) depending only on H and H. We prove that in the family of all 3-connected plane graphs of minimum degree 5 (or minimum face size 5, respectively), the paths with certain small graphs attached to one of its ends are light.  相似文献   

14.
On bipartite zero-divisor graphs   总被引:1,自引:0,他引:1  
A (finite or infinite) complete bipartite graph together with some end vertices all adjacent to a common vertex is called a complete bipartite graph with a horn. For any bipartite graph G, we show that G is the graph of a commutative semigroup with 0 if and only if it is one of the following graphs: star graph, two-star graph, complete bipartite graph, complete bipartite graph with a horn. We also prove that a zero-divisor graph is bipartite if and only if it contains no triangles. In addition, we give all corresponding zero-divisor semigroups of a class of complete bipartite graphs with a horn and determine which complete r-partite graphs with a horn have a corresponding semigroup for r≥3.  相似文献   

15.
For a simple graph G, let denote the complement of G relative to the complete graph and let PG(x)=det(xI-A(G)) where A(G) denotes the adjacency matrix of G. The complete product GH of two simple graphs G and H is the graph obtained from G and H by joining every vertex of G to every vertex of H. In [2]PGH(x) is represented in terms of PG, , PH and . In this paper we extend the notion of complete product of simple graphs to that of generalized complete product of matrices and obtain their characteristic polynomials.  相似文献   

16.
On island sequences of labelings with a condition at distance two   总被引:1,自引:0,他引:1  
An L(2,1)-labeling of a graph G is a function f from the vertex set of G to the set of nonnegative integers such that |f(x)−f(y)|≥2 if d(x,y)=1, and |f(x)−f(y)|≥1 if d(x,y)=2, where d(x,y) denotes the distance between the pair of vertices x,y. The lambda number of G, denoted λ(G), is the minimum range of labels used over all L(2,1)-labelings of G. An L(2,1)-labeling of G which achieves the range λ(G) is referred to as a λ-labeling. A hole of an L(2,1)-labeling is an unused integer within the range of integers used. The hole index of G, denoted ρ(G), is the minimum number of holes taken over all its λ-labelings. An island of a given λ-labeling of G with ρ(G) holes is a maximal set of consecutive integers used by the labeling. Georges and Mauro [J.P. Georges, D.W. Mauro, On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] inquired about the existence of a connected graph G with ρ(G)≥1 possessing two λ-labelings with different ordered sequences of island cardinalities. This paper provides an infinite family of such graphs together with their lambda numbers and hole indices. Key to our discussion is the determination of the path covering number of certain 2-sparse graphs, that is, graphs containing no pair of adjacent vertices of degree greater than 2.  相似文献   

17.
Let λ(F) be the least eigenvalue of a finite graph F. The least limiting eigenvalue λ(G) of a connected infinite graph G is defined by λ(G)=infF{λ(F)}, where F runs over all finite induced subgraphs of G. In [4] and [5] it is proved that λ(G)⩾−2 if and only if G is a generalized line graph. In this paper all connected infinite graphs (thus all generalized line graphs) with λ(G)>−2 are characterized.  相似文献   

18.
A new approach is suggested to the study of the chromatic uniqueness of complete multipartite graphs. The approach is based on the natural lattice order introduced for such graphs. It is proved that atoms with nonelemental partite sets are chromatically unique in the lattice of complete t-partite n-graphs for any given positive integers n and t.  相似文献   

19.
A graph H is imbedded in a graph G if a subset of the vertices of G determines a subgraph isomorphic to H. If λ(G) is the least eigenvalue of G and kR(H) = lim supd→∞ {λ(G)| H imbedded in G; G regular and connected; diam(G) > d; deg(G) > d}, then λ(H) ? 2 ≤ kR(H) ≤ λ(H) with these bounds being the best possible. Given a graph H, there exist arbitrarily large families of isospectral graphs such that H can be imbedded in each member of the family.  相似文献   

20.
Hong Bian 《Discrete Mathematics》2009,309(16):5017-5023
For graph G, its perfect matching polytope Poly(G) is the convex hull of incidence vectors of perfect matchings of G. The graph corresponding to the skeleton of Poly(G) is called the perfect matching graph of G, and denoted by PM(G). It is known that PM(G) is either a hypercube or hamilton connected [D.J. Naddef, W.R. Pulleyblank, Hamiltonicity and combinatorial polyhedra, J. Combin. Theory Ser. B 31 (1981) 297-312; D.J. Naddef, W.R. Pulleyblank, Hamiltonicity in (0-1)-polytope, J. Combin. Theory Ser. B 37 (1984) 41-52]. In this paper, we give a sharp upper bound of the number of lines for the graphs G whose PM(G) is bipartite in terms of sizes of elementary components of G and the order of G, respectively. Moreover, the corresponding extremal graphs are constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号