首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes microfluidic systems containing immobilized hydrogel-encapsulated mammalian cells that can be used as cell-based biosensors. Mammalian cells were encapsulated in three-dimensional poly(ethylene glycol)(PEG) hydrogel microstructures which were photolithographically polymerized in microfluidic devices and grown under static culture conditions. The encapsulated cells remained viable for a week and were able to carry out enzymatic reactions inside the microfluidic devices. Cytotoxicity assays proved that small molecular weight toxins such as sodium azide could easily diffuse into the hydrogel microstructures and kill the encapsulated cells, which resulted in decreased viability. Furthermore, heterogeneous hydrogel microstructures encapsulating two different phenotypes in discrete spatial locations were also successfully fabricated inside microchannels.  相似文献   

2.
A novel method based on fluorescence detection of hydrogel encapsulated cells in microchannels was developed for anticancer drug analysis. In this work, human hepatoma HepG2 cells and human lung epithelial A549 cells were simultaneously immobilized inside two different shapes of three-dimensional hydrogel microstructures using photolithography approach on a same array. Microarrays of living cells offer the potential for parallel detection of many cells and thereby enable high-throughput assays. Using a photolithographic setup, we investigated the prepolymer composition and crosslinking parameters that influenced cell viability inside photocrosslinked hydrogels. The viability of cells encapsulated inside hydrogel microstructures was higher than 90% under optimized photocrosslinking conditions. The cells were further cultured under stable conditions and remained viable for at least three days that were able to carry out cell-based assays. Furthermore, we studied the variation of two intracellular redox parameters (glutathione and reactive oxygen species) in anticancer drug-induced apoptosis in HepG2 and A549 cells. Two anticancer drugs exhibited distinct effects on the levels of intracellular glutathione and reactive oxygen species, indicating the selectivity of these drugs on the disturbance of redox balance within cells. The established platform provides a convenient and fast method for monitoring the effect of anticancer drugs on tumor cells, which is very useful for fundamental biomedical research.  相似文献   

3.
We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.  相似文献   

4.
Lee KH  No da Y  Kim SH  Ryoo JH  Wong SF  Lee SH 《Lab on a chip》2011,11(6):1168-1173
Here, we present a novel and simple process of spheroid formation and in situ encapsulation of the formed spheroid without intervention. A hemispherical polydimethylsiloxane (PDMS) micromold was employed for the formation of uniform sized spheroids and two types of nano-porous membrane were used for the control of the crosslinking agent. We characterized the transport properties of the membrane, and the selection of alginate hydrogel as a function of gelation time, alginate concentration, and membrane type. Using the developed process and micromold, HepG2 cell spheroids were successfully formed and encapsulated in alginate without replating. This method allows spheroid encapsulation with minimal damage to the spheroid while maintaining high cell viability. We demonstrate the feasibility of this method in developing a bio-artificial liver (BAL) chip by evaluating viability and function of encapsulated HepG2 spheroids. This method may be applied to the encapsulation of several aggregating cell types, such as β-cells for islet formation and stem cells for embryonic body preservation, or as a model for tumor cell growth and proliferation in a 3D hydrogel environment.  相似文献   

5.
pH‐Cleavable cell‐laden microgels with excellent long‐term viabilities were fabricated by combining bioorthogonal strain‐promoted azide–alkyne cycloaddition (SPAAC) and droplet‐based microfluidics. Poly(ethylene glycol)dicyclooctyne and dendritic poly(glycerol azide) served as bioinert hydrogel precursors. Azide conjugation was performed using different substituted acid‐labile benzacetal linkers that allowed precise control of the microgel degradation kinetics in the interesting pH range between 4.5 and 7.4. By this means, a pH‐controlled release of the encapsulated cells was achieved upon demand with no effect on cell viability and spreading. As a result, the microgel particles can be used for temporary cell encapsulation, allowing the cells to be studied and manipulated during the encapsulation and then be isolated and harvested by decomposition of the microgel scaffolds.  相似文献   

6.
To prepare spherical polymer hydrogels, we used a flow-focusing microfluidic channel device for mixing aqueous solutions of two water-soluble polymers. Continuous encapsulation of cells in the hydrogels was also examined. The polymers were bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenyl boronic acid groups (PMBV) and poly(vinyl alcohol) (PVA), which spontaneously form a hydrogel in aqueous medium via specific molecular complexation upon mixing, even when they were in cell culture medium. The microfluidic device was prepared with polydimethylsiloxan, and the surface of the channel was treated with fluoroalkyl compound to prevent sticking of the polymers on the surface. The microfluidic channel process could control the diameter of the spherical hydrogels in the range of 30-90 μm and generated highly monodispersed diameter spherical hydrogels. We found that the polymer distribution in the hydrogel was influenced by the PVA concentration and that the hydrogel could be dissociated by the addition of d-sorbitol to the suspension. The single cells could be encapsulated and remain viable in the hydrogels. The localized distribution of polymers in the hydrogel may provide an environment for modulating cell function. It is concluded that the spontaneous hydrogel formation between PMBV and PVA in the flow-focusing microfluidic channel device is applicable for continuous preparation of a spherical hydrogel-encapsulating living cell.  相似文献   

7.
Yue W  Li CW  Xu T  Yang M 《Lab on a chip》2011,11(19):3352-3355
We have developed a single step microfabrication method to prepare constriction microstructures on a PCB master by controlling the etching time of two microchannels separated by a finite distance that is easily attainable using imagesetters widely available in the printing industry. PDMS replica of the constriction structures present sieving microstructures (microsieves) that could be used for size-dependent trapping of microspheres, biological cells and the formation of water-in-oil droplets.  相似文献   

8.
Micrometer-sized hydrogel particles that contain living cells can be fabricated with exquisite control through the use of droplet-based microfluidics and bioinert polymers such as polyethyleneglycol (PEG) and hyperbranched polyglycerol (hPG). However, in existing techniques, the microgel gelation is often achieved through harmful reactions with free radicals. This is detrimental for the viability of the encapsulated cells. To overcome this limitation, we present a technique that combines droplet microfluidic templating with bio-orthogonal thiol-ene click reactions to fabricate monodisperse, cell-laden microgel particles. The gelation of these microgels is achieved via the nucleophilic Michael addition of dithiolated PEG macro-cross-linkers to acrylated hPG building blocks and does not require any initiator. We systematically vary the microgel properties through the use of PEG linkers with different molecular weights along with different concentrations of macromonomers to investigate the influence of these parameters on the viability and proliferation of encapsulated yeast cells. We also demonstrate the encapsulation of mammalian cells including fibroblasts and lymphoblasts.  相似文献   

9.
Living materials are created through the embedding of live, whole cells into a matrix that can house and sustain the viability of the encapsulated cells. Through the immobilization of these cells, their bioactivity can be harnessed for applications such as bioreactors for the production of high‐value chemicals. While the interest in living materials is growing, many existing materials lack robust structure and are difficult to pattern. Furthermore, many living materials employ only one type of microorganism, or microbial consortia with little control over the arrangement of the various cell types. In this work, a Pluronic F127‐based hydrogel system is characterized for the encapsulation of algae, yeast, and bacteria to create living materials. This hydrogel system is also demonstrated to be an excellent material for additive manufacturing in the form of direct write 3D‐printing to spatially arrange the cells within a single printed construct. These living materials allow for the development of incredibly complex, immobilized consortia, and the results detailed herein further enhance the understanding of how cells behave within living material matrices. The utilization of these materials allows for interesting applications of multikingdom microbial cultures in immobilized bioreactor or biosensing technologies.  相似文献   

10.
The simultaneous quantification of multi-miRNAs in single cells reveals cellular heterogeneity, and benefits the subtypes discrimination of cancer cells . Though micro-droplet techniques enable successful single cell encapsulation, the isolated and restricted reaction space of microdroplets causes cross-reactions and inaccuracy for simultaneous multi-miRNAs quantification. Herein, we develop a hydrogel microbead based strategy for the simultaneous sensitive quantification of miRNA-21, 122 and 222 in single cells. Single cells are encapsulated and undergo cytolysis in hydrogel microbeads. The three target miRNAs are retained in the microbead by pre-immobilized capture probes, and activate rolling circle amplification (RCA) reactions. The RCA products are hybridized with corresponding dye labelled DNA reporters, and the respective fluorescence intensities are recorded for multi-miRNA quantification. The porous structure of the hydrogel microbeads allows the free diffusion of reactants and easy removal of unreacted DNA strands, which effectively avoids nonspecific cross-reactions. Clear differentiation of cellular heterogeneity and subpopulation discrimination are achieved for three kinds of liver cancer cells and one normal liver cell.

A single cell multi-miRNAs quantification strategy is reported. Single cells are encapsulated and undergo cytolysis in hydrogel microbeads, then the quantitative analysis of three miRNAs is used to achieve sub-populations discrimination for liver cells.  相似文献   

11.
Construction of 3D tissues by various types of cells with specific characteristics is an important and fundamental technology in tissue reconstruction medicine and animal‐free diagnosis system. To do so, an excellent extracellular matrix (ECM) is needed for encapsulation of cells and maintaining cell activity. Spontaneously forming hydrogel matrix is used by complexation between two water‐soluble polymers, 2‐methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups and poly(vinyl alcohol). Two cytokines for cell proliferation are immobilized in the hydrogel matrix to control the activities of the encapsulated cells. The cytokine‐immobilized hydrogel matrix can encapsulate both L929 fibroblasts and normal human dermal fibroblasts under mild condition. The physical properties of the hydrogel matrix can follow the proliferation process of the encapsulated cells. The encapsulated cells secrete ECM in the polymer hydrogel networks upon 3D culturing for 7 days. Consequently, the tissue‐mimicking ECM hybrid hydrogels are fabricated successfully.  相似文献   

12.
The individual encapsulation of living cells has a great impact on the areas of single cell-based sensors and devices as well as fundamental studies in single cell-based biology. In this work, living Chlorella cells were encapsulated individually with abiological, functionalizable TiO(2), by a designed catalytic peptide that was inspired by biosilicification of diatoms in nature. The bioinspired cytocompatible reaction conditions allowed the encapsulated Chlorella cells to maintain their viability and original shapes. After formation of the TiO(2) shells, the shells were postfunctionalized by using catechol chemistry. Our work suggests a bioinspired approach to the interfacing of individual living cells with abiological materials in a controlled manner.  相似文献   

13.
This paper describes micropatterning of proteins on the surface of three-dimensional hydrogel microstructures. Poly(ethylene glycol) (PEG)-based hydrogel microstructures were fabricated on a glass substrate using a poly(dimethylsiloxane) (PDMS) replica as a molding insert and photolithography. The lateral dimension and height of the hydrogel microstructures were easily controlled by the feature size of the photomask and depth of the PDMS replica, respectively. Bovine serum albumin (BSA), a model protein, was covalently immobilized to the surface of the hydrogel microstructure via a 5-azidonitrobenzoyloxy N-hydroxysuccinimide bifunctional linker at a surface density of 1.48 mg cm−2. The immobilization of BSA on the PEG hydrogel surface was demonstrated with XPS by confirming the formation of a new nitrogen peak, and the selective immobilization of fluorescent-labeled BSA on the outer region of the three-dimensional hydrogel micropattern was demonstrated by fluorescence. A hydrogel microstructure could immobilize two different enzymes separately, and sequential bienzymatic reaction was demonstrated by reacting glucose and Amplex Red with a hydrogel microstructure where glucose oxidase was immobilized on the surface and peroxidase was encapsulated. Activity of immobilized glucose oxidase was 16.5 U mg−1, and different glucose concentration ranged from 0.1 to 20 mM could be successfully detected.  相似文献   

14.
Assays toward single‐cell analysis have attracted the attention in biological and biomedical researches to reveal cellular mechanisms as well as heterogeneity. Yet nowadays microfluidic devices for single‐cell analysis have several drawbacks: some would cause cell damage due to the hydraulic forces directly acting on cells, while others could not implement biological assays since they could not immobilize cells while manipulating the reagents at the same time. In this work, we presented a two‐layer pneumatic valve‐based platform to implement cell immobilization and treatment on‐chip simultaneously, and cells after treatment could be collected non‐destructively for further analysis. Target cells could be encapsulated in sodium alginate droplets which solidified into hydrogel when reacted with Ca2+. The size of hydrogel beads could be precisely controlled by modulating flow rates of continuous/disperse phases. While regulating fluid resistance between the main channel and passages by the integrated pneumatic valves, on‐chip capture and release of hydrogel beads was implemented. As a proof of concept for on‐chip single‐cell treatments, we showed cellular live/dead staining based on our devices. This method would have potential in single cell manipulation for biochemical cellular assays.  相似文献   

15.
Transplantation of islet cells into diabetic patients is a promising therapy, provided that the islet cells are able to evade host immune rejection. With improved islet viability, this strategy may effectively reverse diabetes. We applied 2% calcium alginate to generate small and large capsules to encapsulate porcine neonatal pancreatic cell clusters (NPCCs) using an air-driven encapsulator. After encapsulation, the viability was assessed at 1, 4, 7, 14 and 28 days and secretion of functional insulin in response to glucose stimulation were tested at days 14 and 28. Selective permeability of the small alginate capsules was confirmed using various sizes of isothiocyanate-labeled dextran (FITC-dextran). Encapsulation of NPCCs was performed without islet protrusion in the small and large capsules. The viability of NPCCs in all experimental groups was greater than 90% at day 1 and then gradually decreased after day 7. The NPCCs encapsulated in large capsules showed significantly lower viability (79.50 ± 2.88%) than that of naïve NPCCs and NPCCs in small capsule (86.83 ± 2.32%, 87.67 ± 2.07%, respectively) at day 7. The viability of naïve NPCCs decreased rapidly at day 14 (75.67 ± 1.75%), whereas the NPCCs encapsulated in small capsules maintained (82.0 ± 2.19%). After 14 and 28 days NPCCs' function in small capsules (2.67 ± 0.09 and 2.13 ± 0.09) was conserved better compared to that of naïve NPCCs (2.04 ± 0.25 and 1.53 ± 0.32, respectively) and NPCCs in large capsules (2.04 ± 0.34 and 1.13 ± 0.10, respectively), as assessed by a stimulation index. The small capsules also demonstrated selective permeability. With this encapsulation technique, small capsules improved the viability and insulin secretion of NPCCs without islet protrusion.  相似文献   

16.
Deng Y  Zhang N  Zhao L  Yu X  Ji X  Liu W  Guo S  Liu K  Zhao XZ 《Lab on a chip》2011,11(23):4117-4121
In this paper, we demonstrate a new type of microfluidic chip that can realize continuous-flow purification of hydrogel beads from a carrier oil into aqueous solution by using a laminar-like oil/water interface. The microfluidic chip is composed by two functional components: (1) a flow-focusing bead generation module that can control size and shape of beads, (2) a bead extraction module capable of purifying hydrogel beads from oil into aqueous solution. This module is featured with large branch channels on one side and small ones on the opposite side. Water is continuously infused into the bead extraction module through the large branch channels, resulting in a laminar-like oil/water interface between the branch junctions. Simulation and experimental data show that the efficiency of oil depletion is determined by the relative flow rates between infused water and carrier oil. By using such a microfluidic device, viable cells (HCT116, colon cancer cell line) can be encapsulated in the hydrogel beads and purified into a cell culture media. Significantly improved cell viability was achieved compared to that observed by conventional bead purification approaches. This facile microfluidic chip could be a promising candidate for sample treatment in lab-on-a-chip applications.  相似文献   

17.
以壳聚糖(CS)为原料,在1-乙基-3-(3-二甲胺丙基)碳-二亚胺盐酸盐(EDC.HCL)和N-羟基琥珀酰亚胺(NHS)的活化作用下,合成了半乳糖基化壳聚糖(GC)单体,并与N-异丙基丙烯酰胺(NIPAAm)反应,制备了温敏性半乳糖基化壳聚糖N-异丙基丙烯酰胺共聚水凝胶(Gal-CS-g-PNIPAAm).通过红外光谱(FTIR)、光电子能谱(XPS)和扫描电子显微镜(SEM)等测试方法对其成分和结构进行了表征,并对其溶胀率和表面亲疏水性进行了研究.在Gal-CS-g-PNIPAAm凝胶表面培养人正常肝细胞系(HL-7702),研究其生长、脱附及转载(再增殖)行为.结果表明Gal-CS-g-PNIPAAm水凝胶具有良好的温度响应性和生物相容性,与PNIPAAm水凝胶相比,Gal-CS-g-PNIPAAm凝胶表面更有利于HL-7702细胞增殖.将温度降低至临界温度(LCST,32.5℃)以下,细胞可以从凝胶表面自发脱附,与酶消化脱附相比,细胞损伤更少.Gal-CS-g-PNIPAAm凝胶表面脱附的细胞比PNIPAAm凝胶表面脱附的细胞活性更高,表明PNIPAAm水凝胶引入GC单体后,凝胶的生物相容性得到改善,且脱附后细胞的增殖活力明显增加.  相似文献   

18.
Poly(carboxylic acid) hydrogel films and hollow capsules undergo reversible size changes in response to variations in pH and/or ionic strength. The films and capsules were obtained from hydrogenbonded poly-N-vinylpyrrolidone/poly(carboxylic acid) layer-by-layer films by chemical crosslinking of the polyacid, followed by pH-induced removal of poly-N-vinylpyrrolidone. Surface-attached hydrogel films present attractive matrices for reversible pH-stimulated loading and/or controlled release of large amounts of synthetic or natural macromolecules including proteins. By varying acidity of poly(carboxylic acids), the hydrogel swelling and the corresponding values of pH for encapsulation/release of functional molecules could be tuned in a wide range from pH 5 to 10. In addition, the capsules are capable of entrapping macromolecules by “locking” the capsule wall with an electrostatically associating polycation, followed by the release of the encapsulated macromolecules at high salt concentrations. The text was submitted by the authors in English.  相似文献   

19.
Strong injectable chitosan thermosensitive hydrogels can be created, without chemical modification, by combining sodium hydrogen carbonate with another weak base, namely, beta‐glycerophosphate (BGP) or phosphate buffer (PB). Here the influence of gelling agent concentration on the mechanical properties, gelation kinetics, osmolality, swelling, and compatibility for cell encapsulation, is studied in order to find the most optimal formulations and demonstrate their potential for cell therapy and tissue engineering. The new formulations present up to a 50‐fold increase of the Young's modulus after gelation compared with conventional chitosan‐BGP hydrogels, while reducing the ionic strength to the level of iso‐osmolality. Increasing PB concentration accelerates gelation but reduces the mechanical properties. Increasing BGP also has this effect, but to a lesser extent. Cells can be easily encapsulated by mixing the cell suspension within the hydrogel solution at room temperature, prior to rapid gelation at body temperature. After encapsulation, L929 mouse fibroblasts are homogeneously distributed within scaffolds and present a strongly increased viability and growth, when compared with conventional chitosan‐BGP hydrogels. Two particularly promising formulations are evaluated with human mesenchymal stem cells. Their viability and metabolic activity are maintained over 7 d in vitro.

  相似文献   


20.
Cells have been encapsulated inside lipid vesicles by using a new microfluidic lipid vesicle formulation technique. Lipid vesicles are formulated within minutes without using toxic lipid solvents. The encapsulation efficiency inside the vesicles is controlled by the microfluidic flows. Green fluorescent proteins (GFP), carcinoma cells, and bead encapsulated vesicles have mean diameters of 27.2 mum, 62.4 mum, and 55.9 mum, respectively. The variations of vesicle sizes are approximately 20% for the GFP and cell encapsulated vesicles and approximately 10% for the bead encapsulated vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号