首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds‐averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non‐diffusive, time‐ and space‐staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
The non-isothermal dynamic behaviour of saturated porous media is analysed numerically employing the finite element method and taking energy convection due to large pore fluid displacements into account. A different pore fluid reference temperature is introduced in order to allow properly for heat convection: this concept is usually neglected in the literature and is discussed and analysed herein. The numerical procedure is validated in a simple problem of hot fluid injection in a steady seepage flow and by comparing the numerical results, neglecting energy convection, with those obtained with a novel solution of the linearised equations, presented herein, which is based on the transfer functions and Fourier transforms method. Finally, the effects of energy convection in wave propagation are analysed: in a pervious porous medium the flux of energy due to energy convection is much greater than the one due to heat conduction; in any case, wave propagation can be considered completely adiabatic even when energy convection is taken into account. Thus the validity of the results presented in the literature and based on the linearised theory is demonstrated.  相似文献   

3.
Time domain simulation of the interaction between offshore structures and irregular waves in shallow water becomes a focus due to significant increase of liquefied natural gas (LNG) terminals. To obtain the time series of irregular waves in shallow water, a numerical wave tank is developed by using the meshless method for simulation of 2D nonlinear irregular waves propagating from deep water to shallow water. Using the fundamental solution of Laplace equation as the radial basis function (RBF) and locating the source points outside the computational domain, the problem of water wave propagation is solved by collocation of boundary points. In order to improve the computation stability, both the incident wave elevation and velocity potential are applied to the wave generation. A sponge damping layer combined with the Sommerfeld radiation condition is used on the radiation boundary. The present model is applied to simulate the propagation of regular and irregular waves. The numerical results are validated by analytical solutions and experimental data and good agreements are observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Two methods for calculating the noise of turbulent exhaust jets of civil aircraft nozzles are considered. The first method is chiefly intended for engineering mass-volume calculations and is based on the solution of the averaged Navier-Stokes equations closed by a two-equation turbulence model. The second method uses direct numerical simulation of large eddies in a turbulent jet and the Kirchhoff surface for calculating noise spectra and radiation patterns in the far field. The possibilities and certain important restrictions of these methods are analyzed. The results obtained using these methods are compared with experimental data.  相似文献   

5.
In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier–Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier–Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.  相似文献   

6.
A generalized continuum theory for granular media is formulated by allowing for the possibility of rotation of granules. The basic balance laws are presented and based on thermodynamical consideration a set of constitutive equations are derived. The theory naturally gives rise to the generation of antisymmetric stress tensor and existence of couple stresses. The basic equations of motion are derived and it is shown that the theory contains Mohr-Coulomb criterion of limiting equilibrium as a special case. The problem of coupled porosity and microrotational wave propagation is investigated and the rectilinear shear flow of granular materials is discussed.  相似文献   

7.
Composite structures are often used in aircraft because of advantages offered by a high strength to weight ratio. Sound transmission through an infinite laminated composite cylindrical shell is studied in the context of the transmission of airborne sound into aircraft interior. The shell is immersed in an external fluid medium and contains an internal fluid, and airflow in an external fluid medium moves with a constant velocity. The different parameters were used to see how laminate specification affected noise transmission. An exact solution is obtained by solving the vibration equation of laminated composite shell and acoustic wave equations simultaneously. Transmission losses (TLs) obtained from numerical solution are compared with those of other authors. The effects of different source condition, structural properties and flight conditions on TL are studied for a range of values, especially, incident angle of the plane wave, Mach number and flight altitude of aircraft, stack sequences, angle of warp and damping.  相似文献   

8.
The effects of thermal radiation on laminar-forced and free convection along the wavy surface are studied. The optically thick limit approximation for the radiation flux is assumed. A modified form for the entropy generation equation is derived. The effect of geometry (e.g. flat surface, wavy surface), fluid friction and heat transfer (e.g. convection and radiation effects) are all included in the modified entropy generation form. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transformed into a calculable planar coordinate system. The governing equations are derived from the complete Navier–Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations for solution by the cubic spline collocation method.  相似文献   

9.
The effects of viscosity on the propagation of a St. Andrew's cross wave which is generated by a simple-harmonic localized disturbance in a rotating stratified fluid are considered. A similarity solution of the linearised equations shows that the velocities decay and that the wave width increases away from the disturbance. Previous solutions in a stratified non-rotating fluid are recovered by letting the rotation tend to zero. The solutions are also valid in the limit of a homogeneous rotating fluid. Further solutions for waves in a realistic ocean and in an isothermal atmosphere on a rotating Earth are also included.  相似文献   

10.

The propagation of a plane heating and ionization wave through a gas is considered; the wave is sustained by a strong flow of monochromatic optical radiation (traveling in the opposite direction) through energy transfer attributable to the emission of a continuous spectrum. In the range of radiation flux densities under consideration, a situation arises in which the expanding hot layer generates a shock wave transparent to the incident radiation. The radiation wave is subsonic. The pressure within the hot layer is smoothly distributed, so that its parameters may be determined by considering the equations of energy and transport of the monochromatic source radiation and the radiative-transfer equations for various frequencies and directions. The true spectral composition and distribution of the radiation are considered in detail, using refined tables of the thermodynamic and optical properties. The results of numerical calculations relating to air are presented; so are certain details of the methods used in averaging the transfer equations, which prove very efficient for the radiation-gasdynamic problem under consideration and greatly reduce the volume of calculations.

  相似文献   

11.
In this work, it is investigated how classical techniques of linear feedback control design can be applied to the problem of the reduction of acoustic radiation from vibrating structures for cases where the disturbance is broadband and where no reference is available. Much of the work carried out to date in the field of active noise and vibration control has concentrated on applications where either the disturbance to be cancelled is periodic (propeller noise in aircraft,...) or a reference signal, highly correlated with the disturbance, is available (air conditioning duct noise,...) such that a feedforward control approach can be used. When the disturbance is broadband and where no reference is available, feedforward control cannot be used and feedback control must instead be used. Feedback control theory is well established and a vast amount of analytical tools are available to the feedback control designer. However, due to the inherent delays associated with the propagation of sound waves, feedback control of acoustic fields is prone to being unstable. In this paper, a controller is presented which feeds back a measure of the structural response (vibration) of the system in order to determine the control force that needs to be applied to the vibrating structure in order to reduce the total acoustic energy radiated by the vibrating structure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The present article concerns a commonly used methodology for the numerical simulation of acoustic emission and propagation phenomena. We consider the so‐called multi‐stage hybrid acoustic approach, in which a given noise problem is simulated via a sequence of weakly coupled computations of noise generation and acoustic propagation stages, wherein the simulation of the propagation stage is based on advanced Computational AeroAcoustics (CAA) techniques. The paper introduces an original forcing technique, namely, the Non‐Reflective Interface (NRI), to enable the transfer of an acoustic signal from an a priori noise generation stage into a CAA‐based acoustic propagation phase. Unlike most existing forcing techniques, the NRI is non‐reflective (or anechoic) in nature and, therefore, can properly handle the backscattering effects arising during the noise propagation stage. This attribute makes the NRI‐based weak‐coupling procedure and the associated CAA‐based hybrid approach compatible with a larger variety of realistic noise problems (such as those involving installed configurations in wind tunnel experiments, for instance). The NRI technique is first validated via several test cases of increasing complexity and is then applied to two aerodynamic noise problems. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The noise generated by supersonic plumes is of growing concern given the enormous peak noise intensity radiated by tactical aircraft engines. A key component of this noise is the enhanced radiation of mixing noise caused by large scale eddies convecting supersonically relative to the surrounding quiescent medium. As very little data exist for eddy convection in high Reynolds number, supersonic plumes, our current ability to develop concepts that alter compressible eddy convection is limited. Herein we present new experimental data of eddy convective wavespeeds in the developing shear layer of supersonic heated jets. A new scaling of the wavespeed in radial similarity coordinates is proposed which takes into account the influence of the ratio of static densities between the jet and ambient streams. In particular, we observe a structural change in wavespeed spectra at the end of the potential core—in addition to high turbulence levels, the potential core breakdown region can have enhanced eddy wavespeeds, increasing noise radiation efficiency. The results provide a first examination of the interplay of density ratio effects and the dynamic breakdown process of the potential core in supersonic jets—physics integral to the noise generation process.  相似文献   

14.
基于点插值的配点型无网格法解Helmholtz问题   总被引:1,自引:1,他引:0  
基于点插值法的思想,用三角函数作为基函数在局部支持域内构造具有Kroneckerδ函数性、单位分解性、高阶连续性、再生性和紧支性的形函数.用配点法离散微分方程,得到了具有稀疏带状性的系数矩阵,用GMERS方法求解代数方程组,分别研究了Helmholtz问题的边界层问题和波传播问题.通过数值算例可以发现,给出的数值结果非常接近于精确解,且随着节点的增加,其精确度越来越高,具有良好的收敛性.  相似文献   

15.
Flexural wave propagation characteristics influence the impact noise generation of concrete structures that are found in building floors, railroads, bridges, and many other engineering structures. The flexural vibration of the structure is affected by concrete dynamic properties. The purpose of this study is to measure the concrete dynamic characteristics using a wave propagation approach. The flexural wave speeds, bending stiffness and their loss factors were measured. The measured characteristics are essential for understanding sound radiation and vibration dissipation capabilities of the concrete structures. Various concrete beam structures were made and tested. The dynamic stiffness and loss factor were influenced by its components and showed frequency-dependent variation, especially for the measured loss factor.  相似文献   

16.
The linearised water-wave radiation problem for the oscillating 2D submerged source in an inviscid shear flow with a free surface is investigated analytically. There is a nonzero surface velocity. The depth is infinite and the vorticity is uniform. The amplitudes radiated from the source are calculated analytically. Due to Doppler effects, there may be up to four different emitted waves, and there is resonance with zero group velocity and infinite amplitude.  相似文献   

17.
An extremely efficient and accurate solution method is presented for the propagation of stationary random waves in a viscoelastic, transversely isotropic and stratified half space. The efficiency and accuracy are obtained by using the pseudo excitation method (PEM) with the precise integration method (PIM). The solid is multi-layered and located above a semi-infinite space. The excitation sources form a random field which is stationary in the time domain. PEM is used to transform the random wave equation into deterministic equations. In the frequency-wavenumber domain, these equations are ordinary differential equations which can be solved precisely by using PIM. The power spectral densities (PSDs) and the variances of the ground responses can then be computed. The paper presents the full theory and gives results for instructive examples. The comparison between the analytical solutions and the numerical results confirms that the algorithm presented in this paper has exceptionally high precision. In addition, the numerical results presented show that: surface waves are very important for the wave propagation problem discussed; the ground displacement PSDs and variances are significant over bigger regions in the spatial domain when surface waves exist; and as the depth of the source increases the ground displacement PSDs decrease and the regions over which they have significant effect become progressively more restricted to low frequencies while becoming more widely distributed in the spatial domain.  相似文献   

18.
We employ shallow water analysis to model the flow of particle-driven gravity currents above a horizontal boundary. While there exist similarity solutions for the propagation of a homogeneous gravity current, in which the density difference between the current and ambient is constant, there are no such similarity solutions for particle-driven currents. However, because the settling velocity of the particles is often much less than the initial velocity of propagation of these currents, we can develop an asymptotic series to obtain the deviations from the similarity solutions for homogeneous currents which describe particle-driven currents. The asymptotic results render significant insight into the dynamics of these flows and their domain of validity is determined by comparison with numerical integration of the governing equations and also with experimental measurements. An often used simplification of the governing equations leads to `box' models wherein horizontal variations within the flow are neglected. We show how to derive these models rigorously by taking horizontal averages of the governing equations. The asymptotic series are then used to explain the origin of the scaling of these `box' models and to assess their accuracy.  相似文献   

19.
Existing ideas of instability waves as the main dynamic noise sources in supersonic jets are tested for conformity with the data of acoustic measurements of this noise. Methodologically, the problem consists in the verification of the main principles of Tam’s theory of noise radiation by supersonic jets based on the ideology of instability waves in the shear layer of the jet and their key role in noise generation. Technologically, the study is based on a new technique for measuring the noise, namely, the azimuthal decomposition method developed by the authors. It is shown that on the Strouhal number range from 0.03 to 0.35 the theory satisfactorily describes the radiation pattern of the individual harmonics, while the initial amplitudes of the instability waves are in qualitative agreement with the assumption of their uniform distribution near the nozzle edge.  相似文献   

20.
Active control landing gears are used to alleviate vibration during aircraft taxiing. A nonlinear stochastic dynamics model is established, considering the aircraft body pitch movement and elastic vibration excited by the random runway. The equivalent linearization method is adopted to ensure the model linearity near the balance point, and the Gaussian random process of the runway is generated from the Gaussian white noise using a shape filter. Based on the stochastic optimal control theory, the LQG controller is designed along with weighted quadratic performance index for a better ride comfort, shock absorption, road holding and least energy expenditure. The algebraic Riccati and Lyapunov equations are solved to obtain stationary response while taxiing aircraft at a constant velocity and the differential Riccati and Lyapunov equations are solved to obtain the nonstationary response while taxiing aircraft at a variable velocity. The aircraft dynamic responses are obtained through the runway random process modeled by Monte Carlo method. Simulation results show that active control landing gear can give a better ride comfort, shock absorption and road holding performance no matter whether taxiing is at constant or variable velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号