首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kojro Z  Jahny J  Kim TJ  Ndop J  Schmachtl M  Grill W 《Ultrasonics》2002,40(1-8):67-71
Acoustic microscopy with vector contrast at 100 MHz in a fluid with immersed particles is used to detect the flow profile in front of a microscopic orifice. The velocity profile concerning the component in axial direction of the focused beam is derived from the phase contrast. Possibilities to resolve the flow profile also for the components in normal direction with respect to the axis are demonstrated. The methods concerning measurement techniques and data evaluation for scanning acoustic Doppler microscopy are presented. For scanning acoustic correlation microscopy the time dependent phase and amplitude signals resulting from sound waves scattered by the immersed particles (aluminium flakes with a typical diameter of 10 microm) have been analysed by correlation procedures. From the obtained autocorrelation functions the velocity distribution can be derived. Both methods can be applied simultaneously. Data analysis is based on the information contained in the originally obtained images in vector contrast derived from temporal and spatial resolved analogue and digital processing of the acoustic signals.  相似文献   

2.
Uncoated layered alkane (paraffin) objects with a thickness of up to a hundred nanometers have been imaged by scanning tunneling microscopy. This is surprising in view of the generally assumed excellent insulating nature of paraffins. Tilted layers were observed for n-alkanes of various chain lengths. The chemical nature of the imaged objects was demonstrated by the changes of structure observed near the respective melting temperature.  相似文献   

3.
Kamanyi A  Ngwa W  Betz T  Wannemacher R  Grill W 《Ultrasonics》2006,44(Z1):e1295-e1300
Combined phase-sensitive acoustic microscopy (PSAM) at 1.2 GHz and confocal laser scanning microscopy (CLSM) in reflection and fluorescence has been implemented and applied to polymer blend films and fluorescently labeled fibroblasts and neuronal cells in order to explore the prospects and the various contrast mechanisms of this powerful technique. Topographic contrast is available for appropriate samples from CLSM in reflection and, with significantly higher precision, from the acoustic phase images. Material contrast can be gained from acoustic amplitude V(z) graphs. In the case of the biological cells investigated, the optical and acoustic images are very different and exhibit different features of the samples.  相似文献   

4.
5.
Ndop J  Kim TJ  Grill W  Pluta M 《Ultrasonics》2000,38(1-8):166-170
Based on phase sensitive scanning acoustic microscopy (PSAM), a novel scheme suitable for volume imaging has been developed. The method employs synthetic aperture insonification combined with synthetic aperture imaging. Excitation and detection are performed by planar scanning of two focusing transducer and vector (phase and amplitude) detectors for the ultrasonic wave packages observed in transmission. Examples for applications of the scheme, including technically relevant simplifications based on reduced dimensions of the scan ranges, are presented. Detection schemes already applied for non-destructive testing (NDT) and non-destructive evaluation (NDE) of the mechanical properties of functionally graded materials are an example for the application of the generalised approach presented here with reduced dimensions of the scan. The technique is suitable for NDT and NDE imaging respectively with three-dimensional resolution.  相似文献   

6.
A new method for the investigation of ultrasonic waves on surfaces of solids based on scanning tunneling microscopy is presented. A sinusoidal high frequency signal is added to the tip voltage. Hence the tunneling current contains a component whose frequency is the difference of the frequencies of the acoustic wave field and the ac tip voltage. Amplitude and phase of this component carry the full information about the wave field.  相似文献   

7.
Micro-Brillouin scattering (μ-BR) and a 200 MHz scanning acoustic microscope (SAM) with similar spatial resolutions were applied to evaluate tissue elastic properties in two directions in a trabecula. Acoustic impedance measured by SAM was in the range of 5-9 Mrayl. Wave velocities determined by μ-BR were in the range of (4.75-5.11) × 10(3) m/s. Both exhibited a similar trend of variation across the trabecula and were significantly correlated (R(2) = 0.63-0.67, p < 0.01). μ-BR is useful for the evaluation of tissue stiffness within a trabecula. Combined with SAM or nanoindentation, it can provide additional information to assess elastic anisotropy at the micro-scale.  相似文献   

8.
We present measurements of the reflection and mode conversion of surface acoustic waves (SAWs) by scanning acoustic force microscopy (SAFM). The SAFM offers a unique combination of high lateral resolution and high sensitivity towards acoustic modes of all polarizations. Since a SAW mixing experiment of two waves can be performed even if the amplitude difference between both waves is 40 dB, wavefields of extremely small amplitudes can be investigated. Using SAFM, the reflection of SAWs from a metallic wedge is investigated with submicron lateral resolution. We are able to identify two reflected wave modes, a Love and a non-coupling Rayleigh mode, by measuring their phase velocities. Received: 4 December 2000 / Accepted: 6 December 2000 / Published online: 9 February 2001  相似文献   

9.
Employment of ultrasound techniques in nondestructive testing may require identification of the acoustic modes contributing to imaging. Such identification can be achieved, with some restrictions, by time-of-flight analysis. Another approach is acoustic holography that reveals the propagation properties of any selected mode. In anisotropic media, the propagation features are distinct and allow for a reliable classification of the selected mode. Both techniques were applied for classification of bonded, disbonded, and weakly bonded areas in directly bonded semiconductor wafers.  相似文献   

10.
The magnetic domain structure in oriented Tb0.3Dy0.7Fe1.92 (Terfenol-D) is investigated by scanning electron acoustic microscopy (SEAM) in a wide frequency range from 75 to 530 kHz. Both secondary electron image and electron acoustic image can be obtained in situ simultaneously. By changing the modulation frequencies, the SEAM can be used as an effective nondestructive method to observe not only the surface topography and domain structure but also the subsurface domain structure and defects. The magnetic domain structure is verified by magnetic force microscopy (MFM). Furthermore, magnetic domains can be observed in both linear and nonlinear imaging modes by SEAM. The contributions to the image contrast are related to the signal generation through the piezomagnetic coupling mechanism, magnetostrictive coupling mechanism, and thermal-wave coupling mechanism.  相似文献   

11.
王坤  冷涛  毛捷  廉国选 《应用声学》2021,40(5):657-667
超声显微检测技术应用于电子封装领域始于20世纪80年代,如今已是检测电子封装可靠性和完整性的重要手段,被广泛应用到了电子封装的缺陷检测和精密测量等方面.针对电子封装的超声显微检测存在回波重叠、信噪比低等问题,近年来,发展了许多时频分析方法,用于获得优于常规方法的纵向分辨率,即实现超分辨率.该文首先介绍了超声显微检测的发...  相似文献   

12.
A theoretical analysis is carried out to synthesize acoustic material signatures (AMS) of solid plates immersed in water. The distinctive feature of this analysis is that it avoids three major simplifying assumptions of the presently available techniques, which are, paraxial approximation, assumption of perfect reflection and Gaussian summation of the incident field. Presently available techniques can avoid some but not all of these simplifying assumptions for computing the AMS. In this paper the analysis is carried out for lowfrequency acoustic waves generated by a cylindrical transducer without a lens rod. Reasons for these changes in the conventional acoustic microscope geometry is given. The AMS is synthesized for an aluminium plate in presence as well as in absence of water on its one side. As expected a significant difference is observed between the signatures generated under these two situations.  相似文献   

13.
Using spin-polarized scanning tunneling microscopy, the local excitation of magnons in Fe and Co has been studied. A large cross section for magnon excitation was found for bulk Fe samples while for thin Co films on Cu(111) the cross section linearly scales with film thickness. Recording inelastic tunneling spectra with Fe coated W tips in a magnetic field, the magnonic nature of the excitation was proven. Magnon excitation could be detected without the use of a separating insulating layer opening up the possibility to directly study magnons in magnetic nanostructures via spin-polarized currents.  相似文献   

14.
15.
Hofman T  Raum K  Leguerney I  Saïed A  Peyrin F  Vico L  Laugier P 《Ultrasonics》2006,44(Z1):e1307-e1311
Two hundred-MHz time-resolved scanning acoustic microscopy was applied for the investigation of acoustic and structural bone properties of mice from two inbred strains. Transverse sections of femur taken from 5 C57BL/6J@Ico and 5 C3H/HeJ@Ico mice were explored. Both strains had the same bone diameter, but the C3H/HeJ@Ico mice had greater cortical thickness, smaller cancellous diameter, and greater acoustic impedance values than C57BL/6J@Ico mice. The strong differences in the measured acoustic impedances among the two inbred strains indicate that the impedance is a good parameter to detect genetic variations of the skeletal phenotype in small animal models.  相似文献   

16.
Microscopic inspection of heterogenous three-dimensional (3D) objects such as oral implants, or implants in general, is conventionally performed either on ground sections of methyl-metacrylate-embedded material, at the cellular level by histologic analysis of the peri-implant tissue by light microscopy (LM), or at the supramolecular level by transmission electron microscopy (TEM). Alternatively, the architecture of the tissue/implant interface is visualized by scanning electron microscopy (SEM). The two approaches exclude each other because of the sample preparation.We elaborate conditions for the non-invasive analysis of tissue/implant interfaces by confocal laser scanning microscopy (CLSM) in buffer, hoping to obtain a 3D view of fluorescently labeled tissue constituents at the tissue implant interface and, through subsequent SEM, of the metal surface. The use of water-immersion objectives, originally developed for high LM under physiological conditions is essential.In an exploratory approach, the tissue/Ti-interfaces of two retrieved dental implants were analyzed. One was a step-cylinder used for orthodontic anchoring and the other was an endosseous step-screw implant retrieved after infection-related loosening prior to load. The adhering tissue fragments were fluorescently triple-labeled for actin, fibronectin, and sm-alpha-actin. Optical sections for fluorescent images and for the laser reflection map were registered concomitantly. This approach allowed the labeled structures to be located on the metal surface. Subsequently, the same implants were prepared for SEM of the tissue/implant interface, and upon removal of the adhering structures, of the underlying metal surface. Thus, specific proteins can be identified and their spatial architecture as well as that of the underlying metal surface can be visualized for one and the same implant. The immediate visualization after fluorescence labeling in buffer by means of water immersion objective lenses proved most critical.  相似文献   

17.
The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated. Because only 0 and 180 degree phase transducers are used, an imaging system with the Fresnel zoom lens could work at very high frequency, which overcomes the frequency limit of the traditional phased array acoustic imaging system. Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well. Based on the principle of scanning of the focus with the change of frequency for the excited signal, an experimental imaging system is also built. Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz. Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.  相似文献   

18.
19.
The theory of scanning capacitance microscopy (SCM), used in the examination of a two-dimensional distribution of irregularities in films arranged over metallic substrates, as well as of reliefs of conductive surfaces, is discussed. A realistic model of SCM, which is solvable analytically, is proposed. An explicit solution of the inverse problem of irregularities relief reconstruction (IRR) in SCM is obtained. The possible effects resulting from exciting of free oscillations in the “film-stylus” system of a sonde microscope are analyzed in detail.  相似文献   

20.
Over the past few decades, spin detection and manipulation at the atomic scale using scanning tunneling microcopy has matured, which has opened the possibility of realizing spin-based functional devices with single atoms and molecules.This article reviews the principle of spin polarized scanning tunneling microscopy and inelastic tunneling spectroscopy,which are used to measure the static spin structure and dynamic spin excitation, respectively. Recent progress will be presented, including complex spin structure, magnetization of single atoms and molecules, as well as spin excitation of single atoms, clusters, and molecules. Finally, progress in the use of spin polarized tunneling current to manipulate an atomic magnet is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号