首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bhagat AA  Hou HW  Li LD  Lim CT  Han J 《Lab on a chip》2011,11(11):1870-1878
Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ~10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.  相似文献   

2.
Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the intrinsic dielectric properties of the particles, is a promising marker-free, accurate, fast, and low-cost technique that enables the isolation of CTCs from blood cells. This study presents a continuous flow, antibody-free DEP-based microfluidic device to concentrate MCF7 breast cancer cells, a well-established CTC model, in the presence of leukocytes extracted from human blood samples. The enrichment strategy was determined according to the DEP responses of the corresponding cells, obtained in our previously reported DEP spectrum study. It was based on the positive-DEP integrated with hydrodynamic focusing under continuous flow. In the proposed device, the parylene microchannel with two inlets and outlets was built on top of rectangular and equally spaced isolated planar electrodes rotated certain degree relative to the main flow (13°). The recovery of MCF7 cells mixed with leukocytes was 74%–98% at a frequency of 1 MHz and a magnitude of 10–12 Vpp. Overall, the results revealed that the presented system successfully concentrates MCF7 cancer cells from leukocytes, ultimately verifying our DEP spectrum study, in which the enrichment frequency and separation strategy of the microfluidic system were determined.  相似文献   

3.
Peripheral blood can provide valuable information on an individual’s immune status. Cell‐based assays typically target leukocytes and their products. Characterization of leukocytes from whole blood requires their separation from the far more numerous red blood cells. 1 Current methods to classify leukocytes, such as recovery on antibody‐coated beads or fluorescence‐activated cell sorting require long sample preparation times and relatively large sample volumes. 2 A simple method that enables the characterization of cells from a small peripheral whole blood sample could overcome limitations of current analytical techniques. We describe the development of a simple graphene oxide surface coated with single‐domain antibody fragments. This format allows quick and efficient capture of distinct WBC subpopulations from small samples (~30 μL) of whole blood in a geometry that does not require any specialized equipment such as cell sorters or microfluidic devices.  相似文献   

4.
Lithography-free etching of complex surface features is achieved by harnessing the enzyme proteinase K (PK), controlled by bovine serum albumin (BSA), to digest a biodegradable polymer. This bio-sculpting process is used to construct a membraneless filtration device for the size-based isolation and enrichment of cells from whole blood.  相似文献   

5.
A microfluidic platform developed for quantifying the dependence of erythrocyte (red blood cell, RBC) responses by ABO-Rh blood type via direct current insulator dielectrophoresis (DC-iDEP) is presented. The PDMS DC-iDEP device utilized a 400 x 170?μm2 rectangular insulating obstacle embedded in a 1.46-cm long, 200-μm wide inlet channel to create spatial non-uniformities in direct current (DC) electric field density realized by separation into four outlet channels. The DC-iDEP flow behaviors were investigated for all eight blood types (A+, A-, B+, B-, AB+, AB-, O+, O-) in the human ABO-Rh blood typing system. Three independent donors of each blood type, same donor reproducibility, different conductivity buffers (0.52-9.1?mS/cm), and DC electric fields (17.1-68.5?V/cm) were tested to investigate separation dependencies. The data analysis was conducted from image intensity profiles across inlet and outlet channels in the device. Individual channel fractions suggest that the dielectrophoretic force experienced by the cells is dependent on erythrocyte antigen expression. Two different statistical analysis methods were conducted to determine how distinguishable a single blood type was from the others. Results indicate that channel fraction distributions differ by ABO-Rh blood types suggesting that antigens present on the erythrocyte membrane polarize differently in DC-iDEP fields. Under optimized conductivity and field conditions, certain blind blood samples could be sorted with low misclassification rates.  相似文献   

6.
This paper describes the design, fabrication, and test of a PDMS/PMMA-laminated microfluidic device for an immunosensing biochip. A poly(dimethyl siloxane)(PDMS) top substrate molded by polymer casting and a poly(methyl methacrylate)(PMMA) bottom substrate fabricated by hot embossing are bonded with pressure and hermetically sealed. Two inlet ports and an air vent are opened through the PDMS top substrate, while gold electrodes for electrochemical biosensing are patterned onto the PMMA bottom substrate. The analyte sample is loaded from the sample inlet port to the detection chamber by capillary force, without any external intervening forces. For this and to control the time duration of sample fluid in each compartment of the device, including the inlet port, diffusion barrier, reaction chamber, flow-delay neck, and detection chamber, the fluid conduit has been designed with various geometries of channel width, depth, and shape. Especially, the fluid path has been designed so that the sample flow naturally stops after filling the detection chamber to allow sufficient time for biochemical reaction and subsequent washing steps. As model immunosensing tests for the microfluidic device, functionalizations of ferritin and biotin to the sensing surfaces on gold electrodes and their biospecific interactions with antiferritin antiserum and streptavidin have been investigated. An electrochemical detection method for immunosensing by biocatalyzed precipitation has been developed and applied for signal registration. With the biochip, the whole immunosensing processes could be completed within 30 min.  相似文献   

7.
Chen X  Cui D  Liu C  Li H  Chen J 《Analytica chimica acta》2007,584(2):237-243
A novel integrated microfluidic device that consisted of microfilter, micromixer, micropillar array, microweir, microchannel, microchamber, and porous matrix was developed to perform sample pre-treatment of whole blood. Cell separation, cell lysis and DNA purification were performed in this miniaturized device during a continuous flow process. Crossflow filtration was proposed to separate blood cells, which could successfully avoid clogging or jamming. After blood cells were lyzed in guanidine buffer, genomic DNA in white blood cells was released and adsorbed on porous matrix fabricated by anodizing silicon in HF/ethanol electrolyte. The flow process of solutions was simulated and optimized. The anodization process of porous matrix was also studied. Using the continuous flow procedure of cell separation, cell lysis and DNA adsorption, average 35.7 ng genomic DNA was purified on the integrated microfluidic device from 1 μL rat whole blood. Comparison with a commercial centrifuge method, the miniaturized device can extract comparable amounts of PCR-amplifiable DNA in 50 min. The greatest potential of this integrated miniaturized device was illustrated by pre-treating whole blood sample, where eventual integration of sample preparation, PCR, and separation on a single device could potentially enable complete detection in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.  相似文献   

8.
Researchers are actively developing devices for the microanalysis of complex fluids, such as blood. These devices have the potential to revolutionize biological analysis in a manner parallel to the computer chip by providing very high throughput screening of complex samples and massively parallel bioanalytical capabilities. A necessary step performed in clinical chemistry is the isolation of plasma from whole blood, and effective sample preparation techniques are needed for the development of miniaturized clinical diagnostic devices. This study demonstrates the use of passive, operating entirely on capillary action, transverse-flow microfilter devices for the microfluidic isolation of plasma from whole blood. Using these planar microfilters, blood can be controllably fractionated with minimal cell lysis. A characterization of the device performance reveals that plasma filter flux is dependent upon the wall shear rate of blood in the filtration channel, and this result is consistent with macroscale blood filtration using microporous membranes. Also, an innovative microfluidic layout is demonstrated that extends device operation time via capillary action from seconds to minutes. Efficiency of these microfilters is approximately three times higher than the separation efficiencies predicted for microporous membranes under similar conditions. As such, the application of the microscale blood filtration designs used in this study may have broad implications in the design of lab-on-a-chip devices, as well as the field of separation science.  相似文献   

9.
Homologous (or allogeneic) blood doping, in which blood is transferred from a donor into a recipient athlete, is the easiest, cheapest, and fastest way to increase red cell mass (hematocrit) and therefore the oxygen-carrying capacity of the blood. Although thought to have been rendered obsolete as a doping strategy by the increased use of rhEPO to increased hematocrits, there is evidence that athletes are still using this potentially dangerous method to improve endurance performance. Current testing for homologous blood doping is based on identification of mixed populations of red blood cells by flow cytometry. This paper proposes that homologous blood doping could also be tested for by high-resolution qPCR-based genotyping and demonstrates that assays could be developed that would detect second populations of cells even if the “donor” blood was depleted of 99 % of the DNA-containing leukocytes. Issues of test specificity and sensitivity are discussed as well as some of the ethical considerations that would have to be addressed if athletes’ genotypes were to be used by the anti-doping authorities to prevent, or detect, the use of prohibited ergogenic practices.  相似文献   

10.
We have developed a novel concept that uses monomers required for making conducting polymers as organic structure-directing agents, for the synthesis of microporous molecular sieves. We show that these monomers facilitate the formation of crystalline and amorphous molecular sieves depending on the synthesis procedure. The monomers filling the pores of the silicates can be polymerized under certain conditions, resulting in a polymer immobilized and protected inside the matrix. The concept was exemplified with para-phenylenemethylene-bis(1-tetrahydrothiophenium) and para-phenylenemethylene-bis(trimethylammonium) that were used to template microporous molecular sieves and subsequently to obtain poly-para-phenylenevinylene (PPV) inside the matrix. The organic self-assembled organic-inorganic material was extensively characterized and the implication on electrical conductivity is presented.  相似文献   

11.
Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are significantly affected by the cross-sectional geometry of microchannels and emphasize the importance of using microfludic systems with geometrical configurations closely matching physiological configurations when modeling the dynamics of whole blood flow in the microcirculation.  相似文献   

12.
A microfluidic device for continuous, real time blood plasma separation   总被引:1,自引:0,他引:1  
Yang S  Undar A  Zahn JD 《Lab on a chip》2006,6(7):871-880
A microfluidic device for continuous, real time blood plasma separation is introduced. The principle of the blood plasma separation from blood cells is supported by the Zweifach-Fung effect and was experimentally demonstrated using simple microchannels. The blood plasma separation device is composed of a blood inlet, a bifurcating region which leads to a purified plasma outlet, and a concentrated blood cell outlet. It was designed to separate blood plasma from an initial blood sample of up to 45% inlet hematocrit (volume percentage of cells). The microfluidic network was designed using an analogous electrical circuit, as well as analytical and numerical studies. The functionality of this device was demonstrated using defibrinated sheep blood. During 30 minutes of continuous blood infusion through the device, all the erythrocytes (red blood cells) traveled through the device toward the concentrated blood outlet while only the plasma was separated at the bifurcating regions and flowed towards the plasma outlet. The device has been operated continuously without any clogging or hemolysis of cells. The experimentally determined plasma selectivity with respect to blood hematocrit level was almost 100% regardless of the inlet hematocrit. The total plasma separation volume percent varied from 15% to 25% with increasing inlet hematocrit. Due to the device's simple structure and control mechanism, this microdevice is expected to be used for highly efficient continuous, real time cell-free blood plasma separation from blood samples for use in lab on a chip applications.  相似文献   

13.
Sung WC  Huang SY  Liao PC  Lee GB  Li CW  Chen SH 《Electrophoresis》2003,24(21):3648-3654
An easy method to fabricate poly(dimethylsiloxane) (PDMS)-based microfluidic chips for protein identification by tandem mass spectrometry is presented. This microchip has typical electrophoretic microchannels, a flow-through sampling inlet, and a sheathless nanoelectrospray ionization (ESI) interface. The surface of the microchannel was modified with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and the generated electroosmotic flow under acidic buffer condition used for the separation was found to be more stable compared to that generated by the microchannel without modification. The feasibility of the device for flow-through sampling, separation, and ESI-MS/MS analysis was demonstrated by the analysis of a standard mixture composed of three tryptic peptides. Results show that four peaks corresponding to three peptide standards and acetylated products of the standard peptide were well resolved and the deduced sequences were consistent with those expected. Furthermore, the compatibility of this device with other miniaturized devices to integrate the whole process was also explored by connecting a miniaturized enzymatic digestion cartridge and a desalting cartridge in series to the sampling inlet of the microchip for the identification of a model protein, beta-casein.  相似文献   

14.
The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular level are available, progress has been hampered by a lack of tumor-specific markers and predictable DNA abnormalities. The main challenge in this endeavor is the small number of available cells of interest, 1–2 per mL in whole blood. We have designed a micromachined device to fractionate whole blood using physical means to enrich for and/or isolate rare cells from peripheral circulation. It has arrays of four successively narrower channels, each consisting of a two-dimensional array of columns. Current devices have channels ranging in width from 20 to 5 μm, and in depth from 20 to 5 μm. Several optimizations resulting in the fabrication of a total of 10 derivative devices have been carried out; only two types are used in this study. Both have increasingly narrower gap widths between the columns along the flow axis with 20, 15, 10, and 5 μm spacing all on one device. The first 20 μm wide segment disperses the cell suspension and creates an evenly distributed flow over the entire device, whereas the others were designed to retain increasingly smaller cells. The channel depth is constant across the entire device, the first type was 10 μm deep and the second type is 20 μm deep. When cells from each of eight tumor cell lines were loaded into the device, all cancerous cells were isolated. In mixing experiments using human whole blood, we were able to fractionate cancer cells without interference from the blood cells. Additionally, either intact cells, or DNA, could be extracted for molecular analysis. The ultimate goal of this work is to characterize the cells on the molecular level to provide non-invasive methods to monitor patients, stage disease, and assess treatment efficacy. Furthermore, this work will use gene expression profiles to gain insights into metastasis.  相似文献   

15.
Here we describe a combined microfluidic-micromagnetic cell separation device that has been developed to isolate, detect and culture circulating tumor cells (CTCs) from whole blood, and demonstrate its utility using blood from mammary cancer-bearing mice. The device was fabricated from polydimethylsiloxane and contains a microfluidic architecture with a main channel and redundant 'double collection' channel lined by two rows of dead-end side chambers for tumor cell collection. The microdevice design was optimized using computational simulation to determine dimensions, magnetic forces and flow rates for cell isolation using epithelial cell adhesion molecule (EpCAM) antibody-coated magnetic microbeads (2.8 μm diameter). Using this device, isolation efficiencies increased in a linear manner and reached efficiencies close to 90% when only 2 to 80 breast cancer cells were spiked into a small volume (1.0 mL) of blood taken from wild type mice. The high sensitivity visualization capabilities of the device also allowed detection of a single cell within one of its dead-end side chambers. When blood was removed from FVB C3(1)-SV40 T-antigen mammary tumor-bearing transgenic mice at different stages of tumor progression, cells isolated in the device using anti-EpCAM-beads and magnetically collected within the dead-end side chambers, also stained positive for pan-cytokeratin-FITC and DAPI, negative for CD45-PerCP, and expressed SV40 large T antigen, thus confirming their identity as CTCs. Using this isolation approach, we detected a time-dependent rise in the number of CTCs in blood of female transgenic mice, with a dramatic increase in the numbers of metastatic tumor cells appearing in the blood after 20 weeks when tumors transition to invasive carcinoma and exhibit increased growth of metastases in this model. Importantly, in contrast to previously described CTC isolation methods, breast tumor cells collected from a small volume of blood removed from a breast tumor-bearing animal remain viable and they can be easily removed from these devices and expanded in culture for additional analytical studies or potential drug sensitivity testing.  相似文献   

16.
Jain A  Munn LL 《Lab on a chip》2011,11(17):2941-2947
Blood cells naturally auto-segregate in postcapillary venules, with the erythrocytes (red blood cells, RBCs) aggregating near the axis of flow and the nucleated cells (NCs)--which include leukocytes, progenitor cells and, in cancer patients, circulating tumor cells--marginating toward the vessel wall. We have used this principle to design a microfluidic device that extracts nucleated cells (NCs) from whole blood. Fabricated using polydimethylsiloxane (PDMS) soft lithography, the biomimetic cell extraction device consists of rectangular microchannels that are 20-400 μm wide, 11 μm deep and up to 2 cm long. The key design feature is the use of repeated expansions/contractions of triangular geometry mimicking postcapillary venules, which enhance margination and optimize the extraction. The device operates on unprocessed whole blood and is able to extract 94 ± 4.5% of NCs with 45.75 ± 2.5-fold enrichment in concentration at a rate of 5 nl s(-1). The device eliminates the need to preprocess blood via centrifugation or RBC lysis, and is ready to be implemented as the initial stage of lab-on-a-chip devices that require enriched nucleated cells. The potential downstream applications are numerous, encompassing all preclinical and clinical assays that operate on enriched NC populations and include on-chip flow cytometry (A. Y. Fu et al., Anal. Chem., 2002, 74, 2451-2457; A. Y. Fu et al., Nat. Biotechnol., 1999, 17, 1109-1111), genetic analyses (M. M. Wang et al., Nat. Biotechnol., 2005, 23, 83-87; L. C. Waters et al., Anal. Chem., 1998, 70, 5172-5176) and circulating tumor cell extraction (S. Nagrath et al., Nature, 2007, 450, 1235-1241; S. L. Stott et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 18392-18397; H. K. Lin et al., Clin. Cancer Res., 2010, 16, 5011-5018).  相似文献   

17.
Circulating tumor cells (CTCs) are an important biomarker for cancer prognosis and treatment monitoring. However, the heterogeneity of the physical and biological properties of CTCs limits the efficiency of various approaches used to isolate small numbers of CTCs from billions of normal blood cells. To address this challenge, we developed a lateral filter array microfluidic (LFAM) device to integrate size‐based separation with immunoaffinity‐based CTC isolation. The LFAM device consists of a serpentine main channel, through which most of a sample passes, and an array of lateral filters for CTC isolation. The unique device design produces a two‐dimensional flow, which reduces nonspecific, geometric capture of normal cells as typically observed in vertical filters. The LFAM device was further functionalized by immobilizing antibodies that are specific to the target cells. The resulting devices captured pancreatic cancer cells spiked in blood samples with (98.7±1.2) % efficiency and were used to isolate CTCs from patients with metastatic colorectal cancer.  相似文献   

18.
Understanding of crystallization mechanisms of molecular sieves is driven by the broad range of usefulness and unique properties they possess. It is still difficult to obtain information related to the crystallization mechanism of molecular sieves, partly because the materials are generally prepared under hydrothermal conditions and the whole reaction happens in the “black box” autoclave. In this work, 2D 1H DQ-SQ NMR results clearly demonstrate that it is not only the electrostatic interactions between organic structure-directing agents (OSDAs) and the framework, but also the correlation among OSDAs playing the dominant structural directing roles during the crystallization process. Our fundamental understanding of the crystallization mechanism of molecular sieves could be of great value to design and synthesize new molecular sieves with desirable structural properties.  相似文献   

19.
Recent evidence implicating leukocytes in angiogenesis raises the question of whether leukocytes and other cells circulating with the blood in microvascular networks can home to capillary sprouts intraluminally. This study describes an investigation of leukocyte trafficking in sprouting capillaries fabricated using soft lithography. The leukocytes passing with whole blood through existing capillaries were able to enter microfabricated capillary sprouts of variable length and sprouting angle due to the mechanical interaction with red blood cells (RBCs) at the sprouting bifurcation, in spite of the complete absence of blood flow through the blind-ended sprouts or any chemoattractants. The RBCs formed "comet tails" (the densely packed cellular trains forming behind leukocytes as they move through narrow capillaries) and effectively pushed leukocytes into the microfabricated sprouts while bypassing them at the sprouting bifurcation. Individual sprouts filled with several leukocytes, as wells as RBCs and platelets, were observed. The results of this study suggest that (i) blood cells are likely present in capillary sprouts throughout their development, (ii) leukocytes and other circulating cells may use this mechanism to home to capillary sprouts intraluminally for direct engraftment, and (iii) tissues may use this phenomenon as another mechanism for local recruitment of leukocytes from the blood stream.  相似文献   

20.
A method for coupling an electrophoretic driven separation to a liquid flow, using conventional fused-silica capillaries and a soft polymeric interface is presented. A novel design of the electrode providing high voltage to the electrophoretic separation was also developed. The electrode consisted of a conductive polyimide/graphite imbedded coating immobilized onto the capillary electrophoresis (CE) column inlet. This integrated electrode gave the same separation performance as a commonly used platinum electrode. The on-column electrode also showed good electrochemical stability in chronoamperometric experiments. In addition, with this electrode design, the electrode position relative to the inlet end of the CE column will always be constant and well defined. The on-line flow injection analysis (FIA)-CE system was used with electrospray ionization (ESI)-time of flight (TOF)-mass spectrometry detection. The preparation of the PDMS (poly(dimethylsiloxane)) interface for FIA-CE is described in detail and used for initial tests of the on-column polymer-imbedded graphite inlet electrode. In this interface, a pressure-driven liquid flow, a make up CE electrolyte and a CE column inlet meet in a two-level cross (95 microm ID) in the PDMS structure, enabling independent flow characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号