首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathematical programs, that become convex programs after freezing some variables, are termed partly convex. For such programs we give saddle-point conditions that are both necessary and sufficient that a feasible point be globally optimal. The conditions require cooperation of the feasible point tested for optimality, an assumption implied by lower semicontinuity of the feasible set mapping. The characterizations are simplified if certain point-to-set mappings satisfy a sandwich condition.The tools of parametric optimization and basic point-to-set topology are used in formulating both optimality conditions and numerical methods. In particular, we solve a large class of Zermelo's navigation problems and establish global optimality of the numerical solutions.Research partly supported by NSERC of Canada.  相似文献   

2.
Given a finite number of closed convex sets whose algebraic representation is known, we study the problem of finding the minimum of a convex function on the closure of the convex hull of the union of those sets. We derive an algebraic characterization of the feasible region in a higher-dimensional space and propose a solution procedure akin to the interior-point approach for convex programming. Received November 27, 1996 / Revised version received June 11, 1999?Published online November 9, 1999  相似文献   

3.
We introduce and characterize a class of differentiable convex functions for which the Karush—Kuhn—Tucker condition is necessary for optimality. If some constraints do not belong to this class, then the characterization of optimality generally assumes an asymptotic form.We also show that for the functions that belong to this class in multi-objective optimization, Pareto solutions coincide with strong Pareto solutions,. This extends a result, well known for the linear case.Research partly supported by the National Research Council of Canada.  相似文献   

4.
A proximal-based decomposition method for convex minimization problems   总被引:10,自引:0,他引:10  
This paper presents a decomposition method for solving convex minimization problems. At each iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers, which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm preserves the good features of the proximal method of multipliers, with the additional advantage that it leads to a decoupling of the constraints, and is thus suitable for parallel implementation. We allow for computing approximately the proximal minimization steps and we prove that under mild assumptions on the problem's data, the method is globally convergent and at a linear rate. The method is compared with alternating direction type methods and applied to the particular case of minimizing a convex function over a finite intersection of closed convex sets.Corresponding author. Partially supported by Air Force Office of Scientific Research Grant 91-0008 and National Science Foundation Grant DMS-9201297.  相似文献   

5.
A proximal bundle method with inexact data is presented for minimizing an unconstrained nonsmooth convex function ff. At each iteration, only the approximate evaluations of ff and its εε-subgradients are required and its search directions are determined via solving quadratic programmings. Compared with the pre-existing results, the polyhedral approximation model that we offer is more precise and a new term is added into the estimation term of the descent from the model. It is shown that every cluster of the sequence of iterates generated by the proposed algorithm is an exact solution of the unconstrained minimization problem.  相似文献   

6.
We generalize the disjunctive approach of Balas, Ceria, and Cornuéjols [2] and devevlop a branch-and-cut method for solving 0-1 convex programming problems. We show that cuts can be generated by solving a single convex program. We show how to construct regions similar to those of Sherali and Adams [20] and Lovász and Schrijver [12] for the convex case. Finally, we give some preliminary computational results for our method. Received January 16, 1996 / Revised version received April 23, 1999?Published online June 28, 1999  相似文献   

7.
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under a weakened convexity condition.  相似文献   

8.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

9.
In this paper, we are concerned with a nonsmooth programming problem with inequality constraints. We obtain an optimality condition for Kuhn-Tucker points to be minimizers. Later on, we present necessary and sufficient conditions for weak duality between the primal problem and its mixed type dual, which help us to extend some earlier work from the literature.  相似文献   

10.
A novel filled function with one parameter is suggested in this paper for finding a global minimizer for a general class of nonlinear programming problems with a closed bounded box. A new algorithm is presented according to the theoretical analysis. The implementation of the algorithm on several test problems is reported with satisfactory numerical results.  相似文献   

11.
We analyze an algorithm for the problem minf(x) s.t.x 0 suggested, without convergence proof, by Eggermont. The iterative step is given by x j k+1 =x j k (1-kf(x k)j) with k > 0 determined through a line search. This method can be seen as a natural extension of the steepest descent method for unconstrained optimization, and we establish convergence properties similar to those known for steepest descent, namely weak convergence to a KKT point for a generalf, weak convergence to a solution for convexf and full convergence to the solution for strictly convexf. Applying this method to a maximum likelihood estimation problem, we obtain an additively overrelaxed version of the EM Algorithm. We extend the full convergence results known for EM to this overrelaxed version by establishing local Fejér monotonicity to the solution set.Research for this paper was partially supported by CNPq grant No 301280/86.  相似文献   

12.
The iterative primal-dual method of Bregman for solving linearly constrained convex programming problems, which utilizes nonorthogonal projections onto hyperplanes, is represented in a compact form, and a complete proof of convergence is given for an almost cyclic control of the method. Based on this, a new algorithm for solving interval convex programming problems, i.e., problems of the form minf(x), subject to γ≤Ax≤δ, is proposed. For a certain family of functionsf(x), which includes the norm ∥x∥ and thex logx entropy function, convergence is proved. The present row-action method is particularly suitable for handling problems in which the matrixA is large (or huge) and sparse.  相似文献   

13.
In this paper, we suggest and analyze an inexact implicit method with a variable parameter for mixed variational inequalities by using a new inexactness restriction. Under certain conditions, the global convergence of the proposed method is proved. Some preliminary computational results are given to illustrate the efficiency of the new inexactness restriction. The results proved in this paper may be viewed as improvement and refinement of the previously known results.  相似文献   

14.
In this paper, we present a two-stage prediction–correction method for solving monotone variational inequalities. The method generates the two predictors which should satisfy two acceptance criteria. We also enhance the method with an adaptive rule to update prediction step size which makes the method more effective. Under mild assumptions, we prove the convergence of the proposed method. Our proposed method based on projection only needs the function values, so it is practical and the computation load is quite tiny. Some numerical experiments were carried out to validate its efficiency and practicality.  相似文献   

15.
Signomial geometric programming (SGP) has been an interesting problem for many authors recently. Many methods have been provided for finding locally optimal solutions of SGP, but little progress has been made for global optimization of SGP. In this paper we propose a new accelerating method for global optimization algorithm of SGP using a suitable deleting technique. This technique offers a possibility to cut away a large part of the currently investigated region in which the globally optimal solution of SGP does not exist, and can be seen as an accelerating device for global optimization algorithm of SGP problem. Compared with the method of Shen and Zhang [Global optimization of signomial geometric programming using linear relaxation, Appl. Math. Comput. 150 (2004) 99–114], numerical results show that the computational efficiency is improved obviously by using this new technique in the number of iterations, the required saving list length and the execution time of the algorithm.  相似文献   

16.
In this paper we present an algorithm of quasi-linear complexity to exactly calculate the infimal convolution of convex quadratic functions. The algorithm exactly and simultaneously solves a separable uniparametric family of quadratic programming problems resulting from varying the equality constraint.  相似文献   

17.
In some real-world problems, the mapping of the variational inequalities does not have any explicit forms and only the function value can be evaluated or observed for given variables. In this case, if the mapping is co-coercive, the basic projection method is applicable. However, in order to determine the step size, the existing basic projection method needs to know the co-coercive modulus in advance. In practice, usually even if the mapping can be characterized co-coercive, it is difficult to evaluate the modulus, and a conservative estimation will lead an extremely slow convergence. In view of this point, this paper presents a self-adaptive projection method without knowing the co-coercive modulus. We also give a real-life example to demonstrate the practicability of the proposed method.  相似文献   

18.
This article presents a simplicial branch and duality bound algorithm for globally solving the sum of convex–convex ratios problem with nonconvex feasible region. To our knowledge, little progress has been made for globally solving this problem so far. The algorithm uses a branch and bound scheme where the Lagrange duality theory is used to obtain the lower bounds. As a result, the lower-bounding subproblems during the algorithm search are all ordinary linear programs that can be solved very efficiently. It has been proved that the algorithm possesses global convergence. Finally, the numerical experiments are given to show the feasibility of the proposed algorithm.  相似文献   

19.
We consider the linear program min{cx: Axb} and the associated exponential penalty functionf r(x) = cx + rexp[(A ix – bi)/r]. Forr close to 0, the unconstrained minimizerx(r) off r admits an asymptotic expansion of the formx(r) = x * + rd* + (r) wherex * is a particular optimal solution of the linear program and the error term(r) has an exponentially fast decay. Using duality theory we exhibit an associated dual trajectory(r) which converges exponentially fast to a particular dual optimal solution. These results are completed by an asymptotic analysis whenr tends to : the primal trajectory has an asymptotic ray and the dual trajectory converges to an interior dual feasible solution.Corresponding author. Both authors partially supported by FONDECYT.  相似文献   

20.
Summary For a nonlinearly constrained convex extremal problem a general interior penalty method is given, that is Hadamard-stable and needs no compactness conditions for convergence. The rate of convergence of the values iso(t) fort+0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号