首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we focused on the structural and elastic properties of four transition metal mononitrides (TMNs) (M=Ti, Nb, Hf and Zr) by using realistic three body interaction potential (RTBIP) model, including the role of temperature. These TMN compounds have been found to undergo NaCl (B1) to CsCl (B2) phase transition, at a pressure quite high as compared to other binary systems. We successfully obtained the phase transition pressures and volume changes at different temperatures. In addition, elastic constants of TMNs at different temperatures are discussed. The present theoretical results have been compared with the available experimental data and predictions of LDA theory.  相似文献   

2.
Low-temperature (T = 4.2–77 K) absorption spectra of CuCl and CuBr nanocrystals in photochromic glass matrixes are studied. A fine structure of exciton absorption bands (Z3 band for CuCl and Z12 band for CuBr) is discovered and studied as a function of nanocrystal size. It is suggested that the high-energy part of the absorption band is due to the high-temperature hexagonal β phase being stabilized in very small samples; a transition to the stable cubic phase with increasing nanocrystal size is demonstrated.  相似文献   

3.
 本文利用分子动力学方法研究了KCl晶体在ρ=ρ0时的温度相变。面心立方(fcc)和体心立方(bcc)两种结构的径向分布函数随温度的变化的情况说明,在高压下,发生着bcc结构相fcc结构的转变,bcc结构是不稳定的。为了选取合理的势参数,利用了分子动力学程序在T=0时的性质,计算了NaCl和KCl晶体的零温状态方程,研究了它们在压力作用下发生的多形性相变。计算表明,NaCl和KCl晶体将分别于18.8 GPa和5.9 GPa发生从fcc到bcc的多形性相变,这些值相当接近实验结果。着说明本文选用的势参数势有一定精度的。  相似文献   

4.
Structural transformation in gallium arsenide nanocrystals under pressure is studied using molecular-dynamics simulations on parallel computers. It is found that the transformation from fourfold to sixfold coordination is nucleated on the nanocrystal surface and proceeds inwards with increasing pressure. Inequivalent nucleation of the high-pressure phase at different sites leads to inhomogeneous deformation of the nanocrystal. This results in the transformed nanocrystal having grains of different orientations separated by grain boundaries. A new method based on microscopic transition paths is introduced to uniquely characterize grains and deformations.  相似文献   

5.
+ -implanted SiO2 films is studied as a function of different fabricating conditions (implantation dose, annealing temperature and time). The SiO2 films containing Ge nanocrystals exhibit two photoluminescence (PL) bands peaked at 600 nm and 780 nm. There are two excitation bands in the PL excitation (PLE) spectra. With variation in Ge nanocrystal size, the PL and PLE peak energies show no appreciable shift. The PL and PLE spectral analyses suggest that during the PL process, electron–hole pairs are generated by the E(l) and E(2) direct transitions inside Ge nanocrystals, which then radiatively recombine via luminescent centers in the matrix or at the interface between the nanocrystal/matrix. Received: 27 January 1998/Accepted: 18 March 1998  相似文献   

6.
A review of our recent and ongoing extensive high-pressure synchrotron X-ray diffraction and high-pressure optical spectroscopy studies of nanocrystalline composites is presented. These heterophased, nano-architectured composites consist of amorphous matrices with dispersed nanocrystals or quantum dots. We show how besides compositional variations, additional tuning of these glass-derived nanocomposites can be done by exploiting elevated pressure. We examine stability and pressure-driven phase transitions occurring in nanocrystals as well as structural changes occurring in the glass matrix. Finally, we discuss the influence of the glass matrix of a composite on the structural transformations occurring in the embedded nanocrystals.  相似文献   

7.
The high pressure behavior and pressure induced structural phase transition of two neptunium monochalcogenides have been investigated by using a three body potential approach. The calculated compression curves and the values of different high pressure behavior for NpSe and NpTe are presented and have been discussed and compared with the experimental values wherever available. The accuracy of the present approach in reproducing the phase transition pressure and high pressure behavior for these compounds are in general good agreement with the measured data. For NpSe and NpTe, the phase transition pressures for going from NaCl to CsCl phase have been observed at 22.4 and 14.2 GPa, respectively.  相似文献   

8.
The structural and elastic properties of thorium chalcogenides at high pressure, have been investigated using a suitable inter-ionic potential. The calculated equation of state, phase transition pressures for B1-B2 transition and bulk moduli for ThX (X=S,Se,Te) compounds agree well with the experimental results. ThTe, which crystallizes in the CsCl structure, does not show any structural transition up to 48 GPa. The present analysis does not show any anomalous features in elastic properties arising from ‘f’ electrons.  相似文献   

9.
Two different types of erbium-doped silicon nanocrystals, along with undoped, oxide-capped Si dots, are employed to probe the impact of the impurity center location on phase transition pressure. Using a combination of high pressure optical absorption, micro-Raman, and x-ray diffraction measurements in a diamond anvil cell, it is demonstrated that the magnitude of this phase transition elevation is strongly dictated by the average spatial location of impurity centers introduced into the nanocrystal along with the interfacial quality of the surrounding oxide.  相似文献   

10.
An improved interaction potential model (IIPM) has been formulated to theoretically predict the pressure induced phase transition, elastic properties and thermophysical properties of thorium monopnictides (ThX; X = N, P, As and Sb). The phase transition pressures and volume drop obtained from this model show a better agreement with the available experimental than theoretical results. We have achieved elastic moduli, anisotropy factor, Poisson's ratio, Kleinman parameter, shear and stiffness constants on the basis of the calculated elastic constants. To know the anharmonic properties, we have also computed the third-order elastic constants, first-order pressure derivatives of second-order elastic constants and thermophysical quantities. Our results are in reasonable agreement with available measured and others reported data which supports the validity of model.  相似文献   

11.
The size and concentration of α-quartz nanocrystals dispersed in samples of pseudotachylite and the internal stresses in these nanocrystals have been determined using infrared spectroscopy in the temperature range 300–800 K. Pseudotachylite is a product of intense crushing of granite that undergoes in the Earth’s crust faults. It has been found that the size of the nanocrystals is ~20 nm and does not depend on temperature. As the temperature increases, their concentration decreases monotonically and tends to zero at ~650 K. This process is paralleled by a growth of the concentration of β-quartz nanocrystals. The α-quartz nanocrystal concentration regains its initial level with decreasing temperature. Thus, the α → β phase transition in quartz nanocrystals in pseudotachylite starts at temperatures lower by ~500 K than that in the bulk of the macrocrystal (846 K), and is stretched by ~350 K. At room temperature, the unit cell of nanocrystals is compressed by surface tension forces. These forces retard the α → β phase transition. The thermal expansion coefficient of nanocrystals is larger than that of macrocrystals, which entails a decrease of compression and a monotonic decrease of the concentration of α-quartz nanocrystals with increasing temperature.  相似文献   

12.
To study phase transition and elastic properties at high pressures and high temperatures, we have developed a realistic interaction potential model (RIPZpe) including temperature effects. This model is completely suitable for explaining the inter-atomic interaction involved at high temperature and high pressure as it includes the three-body interaction (TBI) and zero point energy effects. The phase transition of KBr crystal at high pressure and high temperatures including the TBI is done for the first time. We have estimated the phase transition pressures, volume collapses and elastic behaviour at various high pressure and high temperatures by RIPZpe approach and the results found are well suited with available experimental data.  相似文献   

13.
宋晓艳  高金萍  张久兴 《物理学报》2005,54(3):1313-1319
以往关于纳米材料热力学的研究,绝大多数以界面的热力学函数表征整体纳米材料的热力学性质,这种近似处理,对于尺寸超过几十纳米的较粗纳米材料,在相变热力学中对特征转变温度和临界尺寸等重要参量的预测,将导致很大误差. 应用“界面膨胀模型”和普适状态方程,研究了纳米晶界的热力学特性,进一步发展了纳米晶整体材料热力学函数的计算模型,给出了单相纳米多晶体的焓、熵和吉布斯自由能随界面过剩体积、温度,以及晶粒尺寸发生变化的明确表达式. 以Co纳米晶为例,分析了界面与整体纳米多晶体热力学函数的差异,确定了相变温度与晶粒尺寸的依赖关系,以及一定温度下可能发生相变的临界尺寸. 关键词: 纳米多晶体 热力学函数 相变热力学  相似文献   

14.
应用原位X射线衍射法对盐湖卤水体系的两个子体系--NaCl-H2O和NaCl-KCl-H2O溶液在低温条件下进行扫描,获得了实验条件下体系的衍射图谱,得到了溶液低温相变过程的信息。图谱解析结果表明:含NaCl 26.25%的溶液在-20~-25℃范围内析出了冰、NaCl、低水合氯化钠和二水氯化钠,含NaCl 25.70%的溶液没有发生相变;对于NaCl-KCl-H2O体系,含NaCl 20.03%和KCl 10.19%的溶液在0~-25 ℃范围内析出了氯化钾和氯化钠,含NaCl 22.40%和KCl 7.28%的溶液在-10~-25 ℃范围内只有氯化钾析出,含NaCl 21.90%和KCl 6.46%的溶液没有发生相变。实验结果显示:这两个水盐体系低温相变过程析出盐的种类与相图结果有差异,原因在于两者的状态不同;体系中二水氯化钠的析出需要经过氯化钠与水的化合过程,该过程是分步进行的;实验体系在低温条件下发生相变受结晶因素控制,温度只是其中一个因素,体系相变发生与否是结晶因素综合影响的结果。  相似文献   

15.
In the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.   相似文献   

16.
The optical and electrical properties of pure cuprous chloride (CuCl) single crystals have been studied under pressure up to 12 GPa. The transition pressures for the three crystallographic phases have been determined as 5.1 ± 0.1 GPa (ZnS → tetragonal) and 8.8 ± 0.4 GPa (tetrag.-NaCl). During the transition at 5.1 GPa, where the coordination number changes, the formation of cupric ions is observed. This is interpreted as a result of a partial, transient, and reversible disproportionation. In the ZnS and NaCl phase, an enhanced ionic conductivity is found following the first transformation into the tetragonal structure. The concentration of the mobile ions is typically 1018 cm?3 and their diffusivity is ~ 4×10?7 cm2s?1. An applied voltage in excess of 0.7 V causes anodic oxidation of Cu+ which mimics much higher conductivity.  相似文献   

17.
 运用基于密度泛函理论(DFT)的平面波赝势方法(PWP),结合局域密度近似(LDA)以及广义梯度近似(GGA),系统地研究了ZnO的纤锌矿结构(B4结构),NaCl结构(B1结构)和CsCl结构(B2结构)在不同压强下的几何结构、弹性性质和吸收光谱。详细研究了ZnO发生的两次相变(B4→B1及B1→B2相变),得到了不同近似下的相变压强,以及两次相变过程中其弹性常数随压强的变化,并分析了这种变化与相变的关系。发现在高压作用下,ZnO的吸收光谱发生蓝移。通过计算结果和实验结果的比较可以看出,LDA近似下的计算结果更加符合实验结果。  相似文献   

18.
The Born–Mayer potential has been employed to predict the phase transition pressure in four strontium monochalcogenides, namely, SrO, SrS, SrSe, and SrTe, which crystallize in the NaCl (B1) phase and with the application of pressure, transforms to the CsCl (B2) phase. The compression, bulk modulus and the first-order pressure derivative of bulk modulus have also been calculated and compared with the available experimental and other theoretical results. The calculated values of transition pressure and other elastic properties predict that the hardness and strength parameters depend on the crystal structure and have the different values for different structures.  相似文献   

19.
基于第一性原理平面波赝势(PWP)和广义梯度近似(GGA)方法,对闪锌矿结构(ZB)和岩盐结构(RS)的ZnSe在0—20GPa高压下的几何结构、态密度、能带结构进行了计算研究,分析了闪锌矿结构ZnSe和岩盐结构ZnSe的几何结构.在此基础上,研究了ZnSe的结构相变、弹性常数、成键情况以及相变压强下电子结构的变化机理.结果发现:通过焓相等原理得到的ZB相到RS相的相变压强为15.3GPa,而由弹性常数判据得到的相变压强为11.52GPa,但在9.5GPa左右并没有发现简单立方相的出现;在结构相变过程中,sp3轨道杂化现象并未消除,Zn原子的4s电子在RS相ZnSe的导电性中起主要贡献.  相似文献   

20.
The structural phase stability, elastic parameters and thermodynamic properties of YN at normal and under high pressure are reported. The calculations are mainly performed using the full-potential linearized augmented plane wave method within the density functional theory. Both local density approximation (LDA) and generalized gradient approximation (GGA) are used to model the correlation-exchange potential. The calculated equilibrium lattice parameter and the bulk modulus show good accordance with the experimental and previous theoretical reports. The phase transition from the NaCl (B1) structure to the CsCl (B2) structure is found to occur at 131?GPa within GGA and 115?GPa within LDA. The linear pressure coefficients of the different elastic moduli being addressed here are also determined along with the mechanical and dynamical stability criteria which are shown to be satisfied for YN with B1 phase under normal conditions. Besides, the heat capacity and other thermodynamic parameters are examined and discussed versus temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号