共查询到20条相似文献,搜索用时 0 毫秒
1.
《Chaos, solitons, and fractals》2006,27(4):930-940
This paper proposes a synchronization design scheme based on an alternative indirect adaptive fuzzy observer and its application to secure communication of chaotic systems. It is assumed that their states are unmeasurable and their parameters are unknown. Chaotic systems and the structure of the fuzzy observer are represented by the Takagi–Sugeno fuzzy model. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed system is guaranteed. Through this process, the asymptotic synchronization of chaotic systems is achieved. The proposed observer is applied to secure communications of chaotic systems and some numerical simulation results show the validity of theoretical derivations and the performance of the proposed observer. 相似文献
2.
Xing-Yuan Wang Ming-Jun Wang 《Communications in Nonlinear Science & Numerical Simulation》2009,14(4):1502-1508
Based on parameter modulation theory, an observer is presented to identify the unknown parameter of Liu chaotic system, then the useful information modulated in the parameter can be recovered successfully. Numerical simulations show the effectiveness of our method. 相似文献
3.
J.M.V. Grzybowski M. Rafikov J.M. Balthazar 《Communications in Nonlinear Science & Numerical Simulation》2009,14(6):2793-2806
This paper studies the synchronization of the unified chaotic system via optimal linear feedback control and the potential use of chaos in cryptography, through the presentation of a chaos-based algorithm for encryption. 相似文献
4.
The reduced-order synchronization problem of two chaotic systems (master–slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme. 相似文献
5.
Hildebrando M. Rodrigues Jianhong Wu Marcio Gameiro 《Journal of Applied Analysis & Computation》2018,8(2):413-426
The purpose of this paper is to study the behavior of the solutions of two synchronized chaotic systems when the solutions switch from the first to the second system and vice-versa. The initial condition is chosen in the first system and the solutions travels for time $t \in [0, h]$, where $h>0$. The value of the solution at time $h$ is then chosen as the initial condition for the solution of the second system and this solution travels for time $t \in [h, 2h]$. The value of the solution at time $2h$ is then chosen as the initial value for the solution of the first system and so on. The first system is composed of two subsystems, Master and Slave that are synchronized. We present applications using the Lorenz, Chua and Chen systems. Some simulations using Matlab are presented. 相似文献
6.
Shih-Kuen Changchien Chuan-Kuei Huang Hsiau-Hsian Nien Hong-Wei Shieh 《Chaos, solitons, and fractals》2009,39(4):1578-1587
In this paper, we utilize a proper Lyapunov function and Lyapunov theorem, combined with LMIs method, in order to design a controller L, which ensures the synchronization between the transmission and the reception ends of the chaotic secure communication system with time-delay of output state. Meanwhile, for the purpose of increasing communication security, we encrypt and decrypt the original to-be-transmitted message with the techniques of n-shift cipher and public key. The result of simulation shows that the proposed method is able to synchronize the transmission and the reception ends of the system, and moreover, to recover the original message at the reception end. Therefore, the method proposed in this paper is effective and feasible to apply in the chaotic secure communication system. 相似文献
7.
Junqi Yang Fanglai Zhu 《Communications in Nonlinear Science & Numerical Simulation》2013,18(4):926-937
This paper considers the problems of the chaos synchronization and chaos-based secure communication when the observer matching condition is not satisfied. An auxiliary drive signal vector which may satisfy the observer matching condition is constructed. By using the drive signals of original system, a step-by-step sliding mode observer is considered to obtain the exact estimates of the auxiliary drive signals and their derivatives. A reduced-order observer is designed to asymptotically estimate the states of the drive system. By using the estimates of states and the derivatives of the auxiliary signals, an information signal recovery method which does not use any derivative information of original drive system is developed. Finally, a numerical simulation example is given to illustrate the effectiveness of the proposed methods. 相似文献
8.
《Chaos, solitons, and fractals》2005,23(3):1013-1032
A novel observer-base output feedback variable universe adaptive fuzzy controller is investigated in this paper. The contraction and expansion factor of variable universe fuzzy controller is on-line tuned and the accuracy of the system is improved. With the state-observer, a novel type of adaptive output feedback control is realized. A supervisory controller is used to force the states to be within the constraint sets. In order to attenuate the effect of both external disturbance and variable parameters on the tracking error and guarantee the states to be within the constraint sets, a robust controller is appended to the variable universe fuzzy controller. Thus, the robustness of system is improved. By Lyapunov method, the observer-controller system is shown to be stable. The overall adaptive control algorithm can guarantee the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. In the paper, we apply the proposed control algorithms to control the Duffing chaotic system and Chua’s chaotic circuit. Simulation results confirm that the control algorithm is feasible for practical application. 相似文献
9.
A new adaptive variable structure control for chaotic synchronization and secure communication 总被引:6,自引:0,他引:6
A novel adaptive complementary variable structure control is proposed in this paper for chaotic synchronization. The bounded parameters of the model approximation error and the external disturbance are all regarded as unknown constants in this paper. Based on Lyapunov’s stability theory and the Babalat’s lemma the proposed controller has been shown to render the synchronous error to zero. The Duffing–Holmes oscillator was used as an illustrative example. Simulation results validated that the proposed scheme in the application of secure communication. 相似文献
10.
《Communications in Nonlinear Science & Numerical Simulation》2014,19(5):1529-1543
This paper investigates drive-response synchronization of chaotic systems with discontinuous right-hand side. Firstly, a general model is proposed to describe most of known discontinuous chaotic system with or without time-varying delay. An uniform impulsive controller with multiple unknown time-varying delays is designed such that the response system can be globally exponentially synchronized with the drive system. By utilizing a new lemma on impulsive differential inequality and the Lyapunov functional method, several synchronization criteria are obtained through rigorous mathematical proofs. Results of this paper are universal and can be applied to continuous chaotic systems. Moreover, numerical examples including discontinuous chaotic Chen system, memristor-based Chua’s circuit, and neural networks with discontinuous activations are given to verify the effectiveness of the theoretical results. Application of the obtained results to secure communication is also demonstrated in this paper. 相似文献
11.
《Chaos, solitons, and fractals》2005,23(2):589-600
In this paper, we proposed a novel three-order autonomous circuit to construct a chaotic circuit with double scroll characteristic. The design idea is to use RLC elements and a nonlinear resistor. The one of salient features of the chaotic circuit is that the circuit with two flexible breakpoints of nonlinear element, and the advantage of the flexible breakpoint is that it increased complexity of the dynamical performance. Here, if we take a large and suitable breakpoint value, then the chaotic state can masking a large input signal in the circuit. Furthermore, we proposed a secure communication hyperchaotic system based on the proposed chaotic circuits, where the chaotic communication system is constituted by a chaotic transmitter and a chaotic receiver. To achieve the synchronization between the transmitter and the receiver, we are using a suitable Lyapunov function and Lyapunov theorem to design the feedback control gain. Thus, the transmitting message masked by chaotic state in the transmitter can be guaranteed to perfectly recover in the receiver. To achieve the systems performance, some basic components containing OPA, resistor and capacitor elements are used to implement the proposed communication scheme. From the viewpoints of circuit implementation, this proposed chaotic circuit is superior to the Chua chaotic circuits. Finally, the test results containing simulation and the circuit measurement are shown to demonstrate that the proposed method is correct and feasible. 相似文献
12.
C. Posadas-Castillo R.M. Lpez-Gutirrez C. Cruz-Hernndez 《Communications in Nonlinear Science & Numerical Simulation》2008,13(8):1655-1667
In this paper, the synchronization problem of coupled chaotic lasers in master–slave configuration is numerically studied. The approach used allows to give a simple design procedure for the slave laser. In particular, we consider a complex system composed by two chaotic Nd:YAG lasers coupled through the first state variable of the master laser. Synchronization of chaotic Nd:YAG lasers is achieved by injecting the chaotic signal from the master Nd:YAG laser into the slave Nd:YAG laser. The robustness of synchronization is discussed when a mismatch of parameters occurs, and the effects of the channel noise on recovered information are showed. A potential application of chaotic synchronization of Nd:YAG lasers to transmit encrypted digital information is also given. 相似文献
13.
《Communications in Nonlinear Science & Numerical Simulation》2011,16(7):2853-2868
In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to realize chaos synchronization between two different chaotic systems with uncertainties, external disturbances and fully unknown parameters. It is assumed that both master and slave chaotic systems are perturbed by uncertainties, external disturbances and unknown parameters. The bounds of the uncertainties and external disturbances are assumed to be unknown in advance. Suitable update laws are designed to tackle the uncertainties, external disturbances and unknown parameters. For constructing the RASMC a simple sliding surface is first designed. Then, the RASMC is derived to guarantee the occurrence of the sliding motion. The robustness and stability of the proposed RASMC is proved using Lyapunov stability theory. Finally, the introduced RASMC is applied to achieve chaos synchronization between three different pairs of the chaotic systems (Lorenz–Chen, Chen–Lorenz, and Liu–Lorenz) in the presence of the uncertainties, external disturbances and unknown parameters. Some numerical simulations are given to demonstrate the robustness and efficiency of the proposed RASMC. 相似文献
14.
A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization. 相似文献
15.
This paper investigates the synchronization of coupled unified chaotic systems via active control. The synchronization is given in the slave–master scheme and the controller ensures that the states of the controlled chaotic slave system exponentially synchronize with the state of the master system. Numerical simulations are provided for illustration and verification of the proposed method. 相似文献
16.
This letter presents chaos synchronization problem of two different hyperchaotic systems when the parameters of drive and response systems are fully unknown or uncertain. Based on Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are derived such that two different high dimensional chaotic systems are to be synchronized. Hyperchaotic Chen system and Second-harmonic generation (SHG) system are taken as an illustrative example to show the effectiveness of the proposed method. 相似文献
17.
《Communications in Nonlinear Science & Numerical Simulation》2006,11(7):810-830
We consider the coupling of two uncertain dynamical systems with different orders using an adaptive feedback linearization controller to achieve reduced-order synchronization between the two systems. Reduced-order synchronization is the problem of synchronization of a slave system with projection of a master system. The synchronization scheme is an exponential linearizing-like controller and a state/uncertainty estimator. As an illustrative example, we show that the dynamical evolution of a second-order driven oscillator can be synchronized with the canonical projection of a fourth-order chaotic system. Simulation results indicated that the proposed control scheme can significantly improve the synchronousness performance. These promising results justify the usefulness of the proposed output feedback controller in the application of secure communication. 相似文献
18.
This article is concerned with designing of a robust adaptive observer for a class of nonautonomous chaotic system with unknown parameters having unknown bounds. The proposed observer is established from the offered output measurement and robust against model uncertainties and external disturbances. Convergence analysis of the observation error dynamics is realized and proved by Lyapunov stabilization theory. Finally, for verification and demonstration, the proposed method is applied to the Chen as an autonomous chaotic system and the electrostatic transducer as a nonautonomous chaotic system. The numerical simulations illustrate the excellent performance of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 145–153, 2015 相似文献
19.
Arman Kiani-B Kia Fallahi Naser Pariz Henry Leung 《Communications in Nonlinear Science & Numerical Simulation》2009,14(3):863-879
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system. 相似文献
20.
《Communications in Nonlinear Science & Numerical Simulation》2011,16(7):2880-2886
This paper investigates the synchronization of three dimensional chaotic systems by extending our previous method for chaos stabilization, and proposes a novel simple adaptive feedback controller for chaos synchronization. In comparison with previous methods, the present controller contains single state feedback. To our knowledge, the above controller is the simplest control scheme for synchronizing the three dimensional chaotic systems. The results are validated using numerical simulations. 相似文献