首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have used a Raman microprobe technique for the characterisation and the diagnostic of YBCO superconducting thin films deposited by Pulsed-Laser Ablation (PLA) on MgO insulating substrates. Using polarisation analysis associated with sample rotations we developed a method for films orientation determination without any request for absolute calibration of the Raman spectra. The use of a bidimensional multichannel detector (OMA 4) allowed an overall detection time of 40 minutes. Each spectrum (shift range from 100 cm−1 to 700 cm−1) takes about 600 seconds. The results of this detection were used to determine the oxygen content, from the position of the Raman mode at 500 cm−1 Homogeneity was checked with the spatial resolution allowed by the dimension of the focused laser beam (10 μm). Paper presented at the ?VII Congresso SATT?, Torino, 4–7 October 1994.  相似文献   

2.
Atmospheric plasma spray is a fast and economical process for deposition of yttria-stabilized zirconia (YSZ) electrolyte for solid oxide fuel cells. YSZ powders have been used to prepare plasma-sprayed thin ceramic films on the metallic substrate employing plasma spray technology at atmospheric pressure. Alumina doping was employed to improve the structural characteristics and electrical properties of YSZ. The effect of alumina addition from 1 to 5 wt.% on the properties of plasma-sprayed YSZ films was investigated. It was found that the gas permeability of the Al-doped YSZ electrolyte layer reached a level of 8.6 × 10−7 cm4 gf−1 s−1, which is a necessary value for the practical operation of solid oxide fuel cells. Alumina doping considerably increased the ionic conductivity of plasma-sprayed YSZ. The open circuit voltage of the alumina-doped YSZ coating was approximately equal to the theoretical value for dense YSZ material.  相似文献   

3.
Indium oxide films doped with tin (ITO-films) have been hf-sputtered from an 80 at-%In2O3/20 at-%SnO2 target onto glass substrates. The sputter atmosphere contained mainly argon (10−2Torr) with addition of oxygen (0≦p O 2≦2·10−2Torr). The sputtered films aren-conductors. The conductivity and density of charge carriers depend on the oxygen content of the sputter gas. They could be varied by two orders of magnitude. In air or in oxygen atmosphere the films oxidize at the surface and for a certain depth beneath the surface, thus decreasing the conductivity. The Hall mobility of the sputtered films is smaller (≈10 cm2V−1 s−1) than one observes at ITO films produced by CVD sparaying or other methods. The conductivity of as sputtered films approached maximum values of about 1000Ώ−1cm−1.  相似文献   

4.
Transparent conducting Zn−Sn−O films were deposited on Polypropylene adipate thin-film substrates at low temperature by r. f. magnetron sputtering. The structural, electrical and optical properties of the deposited films were investigated. All the obtained films are of amorphous structure and have a very good adhesion to the substrates. The resistivity, carrier concentration and Hall mobility of the film are 1.3×10−2 Ω·cm, 4.1×1019 cm−3 and 12.4 cm2· V−1· s−1, respectively. The transmittance of the film reaches 82%.  相似文献   

5.
Structure in the Raman scattering spectra of near-surface n-GaAs layers (n=2×1018 cm−3) implanted with 100 keV B+ ions in the dose range 3.1×1011–1.2×1014 cm−2 is investigated. The qualitative and quantitative data on the carrier density and mobility and on the degree of amorphization of the crystal lattice and the parameters of the nanocrystalline phase as a result of ion implantation are obtained using a method proposed for analyzing room-temperature Raman spectra. Fiz. Tverd. Tela (St. Petersburg) 41, 1495–1498 (August 1999)  相似文献   

6.
Using transmission coefficients of anisotropic polyethyleneterphthalate films measured in the range of 700–760 cm−1 the optical functions n(v) and χ(v) are calculated in the film plane and perpendicular to its surface. Its shown that the asymmetric broadenings and shift of the maximum of the absorption band at 727 cm−1 in the case of oblique incidence of p-polarized radiation are due to the influence of optical anisotropy and dispersion. A. A. Kuleshov Mogilev State University, 1, Kosmonavtov Str., Mogilev, 212022, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol 66, No. 3, p. 409–412, May–June, 1999.  相似文献   

7.
Solid oxide fuel cells directly convert the chemical energy of a fuel into electricity. To enhance the efficiency of the fuel cells, the thickness of the gastight solid electrolyte membranes should be as thin as possible. Y2O3-stabilised ZrO2 (YSZ) electrolyte films were prepared by reactive sputtering deposition using Zr/Y targets in Ar/O2 atmospheres. The films were 5 – 8 μm thin and were deposited onto anode substrates made of a NiO/YSZ composite. After deposition of a cathode with the composition La0.65Sr0.35MnO3 the electrochemical properties of such a fuel cell were tested under operating conditions at temperatures between 600 °C and 850 °C. Current-voltage curves were recorded and impedance measurements were performed to calculate apparent activation energies from the fitted resistance data. The conductivity of the YSZ films varied between 4.6·10−6 S/cm and 2.2·10−5 S/cm at 400 °C and the fuel cell gave a reasonable power density of 0.4 W/cm2 at 0.7 V and 790 °C using H2 with 3 % H2O as fuel gas. The gas compositions were varied to distinguish the electrochemical processes of the anode and cathode in the impedance spectra. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

8.
The aerosol deposition of detonation nanodiamonds (DNDs) on a silicon substrate is comprehensively studied, and the possibility of subsequent growth of nanocrystalline diamond films and isolated particles on substrates coated with DNDs is demonstrated. It is shown that a change in the deposition time and the weight concentration of DNDs in a suspension in the range 0.001–1% results in a change in the shape of DND agglomerates and their number per unit substrate surface area N s from 108 to 1011 cm−2. Submicron isolated diamond particles are grown on a substrate coated with DND agglomerates at N s ≈ 108 cm−2 using microwave plasma-enhanced chemical vapor deposition. At N s ≈ 1010 cm−2, thin (∼100 nm) nanodiamond films with a root-mean-square surface roughness less than 15 nm are grown.  相似文献   

9.
We report the preparation of multiferroic BiFeO3 thin films on ITO coated glass substrates through sol-gel spin coating method followed by thermal annealing and their modification by swift heavy ion (SHI) irradiation. X-ray diffraction and Raman spectroscopy studies revealed amorphous nature of the as deposited films. Rhombohedral crystalline phase of BiFeO3 evolved on annealing the films at 550°C. Both XRD and Raman studies indicated that SHI irradiation by 200 MeV Au ions result in fragmentation of particles and progressive amorphization with increasing irradiation fluence. The average crystallite size estimated from the XRD line width decreased from 38 nm in pristine sample annealed at 550°C to 29 nm on irradiating these films by 200 MeV Au ions at 1 × 1011 ions cm−2. Complete amorphization of the rhombohedral BiFeO3 phase occurs at a fluence of 1 × 1012 ions.cm−2. Irradiation by another ion (200 MeV Ag) had the similar effect. For both the ions, the electronic energy loss exceeds the threshold electronic energy loss for creation of amorphized latent tracks in BiFeO3.  相似文献   

10.
We demonstrate the stimulated Raman scattering (SRS) of a binary solution of toluene and m-xylene at different volume concentrations in liquid-core optical fiber (LCOF). The results show that SRS of three vibration modes of 1002 cm−1,2920 cm−1 and 3058 cm−1 bands are simultaneously generated at some volume concentrations. The 2920 cm−1 band and the 3058 cm−1 band are generated at one time, the SRS thresholds of the first-order Stokes of the 2920 cm−1 and 3058 cm−1 bands are lower compared with the second-order Stokes threshold of the 1002 cm−1 band and the main peak of the 2920 cm−1 and 3058 cm−1 bands changes from the 2920 cm−1 band to the 3058 cm−1 band as the volume concentrations are changed. We assume that these phenomena are attributed to the intermolecular Fermi resonance. Raman scattering cross section (RSCS) theory is used to explain this assumption.  相似文献   

11.
The surface properties of boron-doped nanocrystalline diamond films treated with H2 plasma was investigated in regard to their electrochemical response for phenol oxidation. The surface of these films is relatively flat formed by crystallites with sizes of about 40 nm. X-ray photoelectron spectroscopy analyses showed that electrode surface has a high amount of C–H bonds. This behavior is in agreement with Mott-Schottky plot measurements concerning the flat band potential that presented a value as expected for hydrogenated diamond surface. This electrode presented the phenol detection limit of 0.08 mg L−1 for low phenol concentrations from 40 to 250 μmol L−1.  相似文献   

12.
We report for the first time stimulated magneto-Raman scattering inp-type InSb. Two different Raman scattering processes were observed. The first one has a Raman shift of about 2cm−1/kG and is observed at magnetic fields up to 30kG. The other one is observable only at high magnetic fields above 30kG and shows Raman shifts between 1.2cm−1 and 3.0cm−1 with a tuning rate of about 0.2cm−1/kG. The first process can be interpreted either as spin-flip Raman scattering by photo-excited electrons in the conduction band or as Raman scattering by holes in the valence band involving transitions from heavy to light hole states. The other Raman shift observed seems to occur on account of transitions between the heavy hole ladders.  相似文献   

13.
We report on the growth of NiSi film on Si(001) substrate with an orientation of NiSi[200]//Si[001]. Polarized Raman spectroscopy was used to assign the symmetry of the NiSi Raman peaks. Raman peaks at 213 cm−1, 295 cm−1, and 367 cm−1 are assigned to be A g symmetry and peaks at 196 cm−1, and 254 cm−1 are B 3g symmetry.  相似文献   

14.
Diamond-like carbon films containing Ag and Cu in nanocrystalline form were deposited onto SnO2-coated glass substrates by electrochemical technique. Relative amount of silver and copper to be incorporated in the DLC matrix was tailored by varying the amount of silver and copper containing salts in the electrolyte. Current density was adjusted to obtain films with different crystallite size while the volume fraction of the metal nanocrystallites was altered by varying the dilution of the solution containing the salts. Raman studies indicated the presence of two peaks located at ∼1350 cm−1 (D-line) and 1566 cm−1 (G-line) for all the films and the relative intensities of these peaks changed with the amount of metal incorporation in it. The FTIR spectra were seen to be dominated by a peak at 975 cm−1 for C-H out of plane deformation modes along with peaks for C-H bending, C-H stretching and C-C stretching modes at 858, 1113 and 1189 cm−1, respectively. The optical absorption spectra showed a single plasmon band instead of two characteristic bands for Ag and Cu. We ascribe this to nanophase limited interfacial alloying at the Ag-Cu interface. The experimental observation was analyzed in the light of Mie theory.  相似文献   

15.
Nd,Cr:Gd3Sc2Ga3O12 (GSGG) thin films have been produced for the first time. They were grown on Si(001) substrates at 650 °C by pulsed laser ablation at 248 nm of a crystalline Nd,Cr:GSGG target rod. The laser plume was analyzed using time-of-flight quadrupole mass spectroscopy, and consisted of elemental and metal oxide fragments with kinetic energies typically in the range 10 to 40 eV, though extending up to 100 eV. Although films deposited in vacuum using laser fluences of 0.8±0.1 J cm−2 reproduced the Nd,Cr:GSGG bulk stoichiometry, those deposited using fluences above ≈3 J cm−2 resulted in noncongruent material transfer and were deficient in Ga and Cr. Attempts to grow films using synchronized oxygen or oxygen/argon pulses yielded mixed oxide phases. Under optimal growth conditions, the films were heteroepitaxial, with GSGG(001)[100]∥Si(001)[100], and exhibited Volmer–Weber-type growth. Room-temperature emission spectra of the films suggest efficient non-radiative energy transfer between Cr3+ and Nd3+ ions, similar to that of the bulk crystal. Received: 1 October 1999 / Accepted: 15 October 1999 / Published online: 23 February 2000  相似文献   

16.
Polycrystalline samples of Pr1−x Sr x Fe0.8Co0.2 O3−δ (x=0.1, 0.2, 0.3) (PSFC) were prepared by the combustion synthesis route at 1200°C. The structure of the polycrystalline powders was analysed with X-ray powder diffraction data. The X-ray diffraction (XRD) patterns were indexed as the orthoferrite similar to that of PrFeO3 having a single-phase orthorhombic perovskite structure (Pbnm). Pr1−x Sr x Fe0.8Co0.2O3−δ (x=0.1, 0.2, 0.3) films have been deposited on yttria-stabilized zirconia (YSZ) single-crystal substrates at 700°C by pulsed laser deposition (PLD) for application to thin film solid oxide fuel cell cathodes. The structure of the films was analysed by XRD, scanning electron microscopy (SEM) and atomic force microscopy (AFM). All films are polycrystalline with a marked texture and present pyramidal grains in the surface with different size distributions. Electrochemical impedance spectroscopy (EIS) measurements of PSFC/YSZ single crystal/PSFC test cells were conducted. The Pr0.7Sr0.3Fe0.8Co0.2O3−δ film at 850°C presents a lower area specific resistance (ASR) value, 1.65 Ω cm2, followed by the Pr0.8Sr0.2Fe0.8Co0.2O3−δ (2.29 Ω cm2 at 850°C) and the Pr0.9Sr0.1Fe0.8Co0.2O3−δ films (5.45 Ω cm2 at 850°C).  相似文献   

17.
SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.  相似文献   

18.
The characteristics of amplified spontaneous emission (ASE) from asymmetric planar waveguides and quasi-waveguides consisting of thin films of poly(methyl methacrylate) incorporating lasing dye pyrromethene 597 deposited onto quartz and glass substrates, respectively, are investigated. The variable stripe length and moving constant stripe methods, together with appropriate theoretical expressions which take into account gain saturation and a simple model based on a four-level laser, allow for obtaining the net gain coefficients as a function of pump intensity, losses, pump thresholds for the onset of ASE, effective stimulated emission cross sections, pump saturation intensities, and saturation lengths. Net gain coefficients of up to 84±3 cm−1 at a pump intensity of 404 kW/cm2 (28 μJ/pulse) for quasi-waveguides and up to 59±6 cm−1 at a pump intensity of 360 kW/cm2 (25 μJ/pulse) for waveguides were obtained, with pump thresholds of 15.7 kW/cm2 (1.1 μJ/pulse) and 6.3 kW/cm2 (0.43 μJ/pulse), respectively. When waveguides 8 μm thick were irradiated with pulses of 200 kW/cm2 at 10 Hz repetition rate, the ASE remained at 79% of its initial value after 1000 pump pulses in the same position of the sample. In quasi-waveguides 10 μm thick, the emission remained at 82% of the initial value under the same conditions.  相似文献   

19.
《Composite Interfaces》2013,20(5):441-448
Zinc oxide thin films have been deposited onto porous silicon (PSi) substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The advantages of the porous Si template are economical and it provides a rigid structural material. Porous silicon is applied as an intermediate layer between silicon and ZnO films and it contributed a large area composed of an array of voids. The nanoporous silicon samples were adapted by photo electrochemical (PEC) etching technique on n-type silicon wafer with (111) and (100) orientation. Micro-Raman and photoluminescence (PL) spectroscopy are powerful and non-destructive optical tools to study vibrational and optical properties of ZnO nanostructures. Both the Raman and PL measurements were also operated at room temperature. Micro-Raman results showed that the A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at around 522 and 530 cm–1, re- spectively. PL spectra peaks are distinctly apparent at 366 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The peak luminescence energy in nanocrystalline ZnO on porous silicon is blue-shifted with regard to that in bulk ZnO (381 nm). The Raman and PL spectra pointed to oxygen vacancies or Zn interstitials which are responsible for the green emission in the nanocrystalline ZnO.  相似文献   

20.
Limited diffusion spaces which may be easily traversed by atoms diffusing along grain boundaries generally cause thin-film diffusion to differ from common bulk diffusion. These peculiarities were studied in Ag−Au thin-film couples by means of electrical resistance measurements. Diffusion coefficients were found to decrease with annealing time mainly as a consequence of recrystallisation and recovery in the films during the diffusion anneal. It is shown that the rate of homogenisation is fairly independent of the film thickness thus giving evidence that diffusion into the crystallites occurs out of the grain boundary network rather than directly through the couple interface. Effective diffusion coefficients determined between 150 and 250° C ranged from 10−14 to 10−16 cm2 s−1 revealing an activation energy of 25 kcal mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号