首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of a pressure wave on the turbulent flow and heat transfer in a rectangular air flow channel has been experimentally studied for fast transients, occurring due to a sudden increase of the main flow by an injection of air through the wall. A fast response measuring technique using a hot film sensor for the heat flux, a hot wire for the velocities and a pressure transducer have been developed. It was found that in the initial part of the transient the heat transfer change is independent of the Reynolds number. For the second part the change in heat transfer depends on thermal boundary layer thickness and thus on the Reynolds number. Results have been compared with a simple numerical turbulent flow and heat transfer model. The main effect on the flow could be well predicted. For the heat transfer a deviation in the initial part of the transient heat transfer has been found. From the turbulence measurements it has been found that a pressure wave does not influence the absolute value of the local turbulent velocity fluctuations. They could be considered to be frozen.Nomenclature A surface area (m2) - D diameter (m) - h heat transfer coefficient (Wm–2 K–1) - p pressure drop (Pa) - P pressure (Pa) - Q heat flow (W) - R tube radius (m) - T bulk temperature (K) - T s surface temperature (K) - t time (s) - u velocity (m/s) - V voltage (V) - y distance from wall (m) - viscosity (N s m–2) - kinematic viscosity (m–2 s–1) - density (kg m–3) - w wall shear stress (N m–2) - Nu Nusselt number - Re Reynolds number  相似文献   

2.
The problem of diffusion of a substance, dissolved in a flow, to absorbing drops (bubbles) moving one after another in a viscous incompressible fluid is investigated. An approximate analytic expression is obtained for the differential and integral flows of the substance to the surface of each drop with consideration of the changes of the concentration and velocity fields due to the presence of other drops. A chain of spherical drops of equal radius arranged on the axis of a uniform forward flow is examined. It is shown that if the distance between drops, referred to the radius of the drops, satisfies the inequality 1lP1/2 (P is the Péclet number), then the integral inflow of the substance to the surface of the second drop of the chain is 2.41 times less than the integral inflow to the first (the drops are enumerated along the flow); the total diffusion flow to the surface of an arbitrary drop with number k is determined by the expression Ik=I1[k1/2 – (k–1)1/2], where Ik is the total flow to the first drop of the chain. The case of diffusion interaction of a solid particle and drop is examined. It is shown that for particles moving one after another with the same velocity in a fluid at rest the presence of a drop before the solid particle leads to a marked decrease of the total diffusion flow of the solid particle [by O(P1/6) times], whereas the presence of a solid particle before a drop does not affect (in the main approximation with respect to the characteristic diffusion parameter) the total flow of the latter.I k=I i[k 1/2–(k–1)1/2]Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 59–69, January–February, 1978.  相似文献   

3.
Results are given of a theoretical and experimental investigation of the intensive interaction between a plasma flow and a transverse magnetic field. The calculation is made for problems formulated so as to approximate the conditions realized experimentally. The experiment is carried out in a magneto-hydrodynamic (MHD) channel with segmented electrodes (altogether, a total of 10 pairs of electrodes). The electrode length in the direction of the flow is 1 cm, and the interelectrode gap is 0.5 cm. The leading edge of the first electrode pair is at x = 0. The region of interaction (the region of flow) for 10 pairs of electrodes is of length 14.5 cm. An intense shock wave S propagates through argon with an initial temperature To = 293 °K and pressure po = 10 mm Hg. The front S moves with constant velocity in the region x < 0 and at time t = 0 is at x = 0. The flow parameters behind the incident shock wave are determined from conservation laws at its front in terms of the gas parameters preceding the wave and the wave velocity WS. The parameters of the flow entering the interaction region are as follows: temperature T 0 1 = 10,000 °K, pressure P 0 1 = 1.5 atm, conduction 0 1 = 3000 –1·m–1, velocity of flow u 0 1 = 3000 m·sec–1, velocity of sounda 0 1 = 1600 m·sec–1, degree of ionization = 2%, 0.4. The induction of the transverse magnetic field B = [0, By(x), 0] is determined only by the external source. Induced magnetic fields are neglected, since the magnetic Reynolds number Rem 0.1. It is assumed that the current j = (0, 0, jz) induced in the plasma is removed using the segmented-electrode system of resistance Re. The internal plasma resistance is Ri = h(A)–1 (h = 7.2 cm is the channel height; A = 7 cm2 is the electrode surface area). From the investigation of the intensive interaction between the plasma flow and the transverse magnetic field in [1–6] it is possible to establish the place x* and time t* of formation of the shock discontinuity formed by the action of ponderomotive forces (the retardation wave RT), its velocity WT, and also the changes in its shape in the course of its formation. Two methods are used for the calculation. The characteristic method is used when there are no discontinuities in the flow. When a shock wave RT is formed, a system of nonsteady one-dimensional equations of magnetohydrodynamics describing the interaction between the ionized gas and the magnetic field is solved numerically using an implicit homogeneous conservative difference scheme for the continuous calculation of shock waves with artificial viscosity [2].Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 112–118, September–October, 1977.  相似文献   

4.
The inner part of a neutral atmospheric boundary layer has been simulated in a wind tunnel, using air injection through the wind tunnel floor to thicken the boundary layer. The flow over both a rural area and an urban area has been simulated by adapting the roughness of the wind tunnel floor. Due to the thickening of the boundary layer the scaling factor of atmospheric boundary layer simulation with air injection is considerably smaller than that without air injection. This reduction of the scaling factor is very important for the simulation of atmospheric dispersion problems in a wind tunnel.The time-mean velocity distribution, turbulence intensity, Reynolds stress and turbulence spectra have been measured in the inner part of the wind tunnel boundary layer. The results are in rather good agreement with atmospheric measurements.Nomenclature d Zero plane displacement, m - h Height of roughness elements, m - k Von Kármán's constant - n Frequency of turbulence velocity component, s–1 - S u(n) Energy spectrum for longitudinal turbulence velocity component, m2 s–1 - S v(n) Energy spectrum for lateral turbulence velocity component, m2 s–1 - S w(n) Energy spectrum for vertical turbulence velocity component, m2 s–1 - U o Free stream velocity outside the boundary layer, m s–1 - Time-mean velocity inside the boundary layer, m s–1 - u* Wall-friction velocity, m s–1 - u Longitudinal turbulence intensity, m s–1 - v Lateral turbulence intensity, m s–1 - w Vertical turbulence intensity, m s–1 - Reynolds stress, m2 s–2 - z Height above earth's surface or wind tunnel floor, m - z o Roughness length, m - Thickness of inner part of boundary layer, m - Thickness of boundary layer, m - Kinematic viscosity, m2 s–1  相似文献   

5.
The rheological properties of dense suspensions, of silica, iron (III) oxide and water, were studied over a range of solids concentrations using a viscometer, which was modified so as to prevent settling of the solid components. Over the conditions studied, the material behaved according to power—law flow relationships. As the concentrations of silica and iron(III) oxide were increased, an entropy term in the flow equation was identified which had a silica dependent and an iron (III) oxide dependent component. This was attributed to a tendency to order into some form of structural regularity. A, A, B, C pre-exponential functions (K Pan s–1) - C ox volume fraction iron (III) oxide - Q activation energy (kJ mol–1) - R gas constant (kJ mol–1 K–1) - R v silica/water volume ratio - T temperature (K) - n power-law index - H enthalpy (kJ mol–1) - S entropy change (kJ mol–1 K–1) - shear strain rate (s–1) - shear stress (Pa)  相似文献   

6.
The results of an experimental study of a flow of rarefied gas of density 10–5 g/cm3 beyond the cutoff of a hypersonic nozzle (M11) by means of an electron beam with energy up to 43 keV are presented. The density and velocity fields at different distances from the nozzle and various receiver pressures were measured using this method and the static and total pressure fields were also measured with the help of a Pitot tube. The flow parameters beyond the nozzle were calculated for two limiting cases: with equilibrium condensation and without condensation. This calculation is compared with the experimental results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 111–117, January–February, 1976.The authors thank S. N. Romanenko for help with the electron-beam experiments.  相似文献   

7.
The temperature and velocity fields associated with the free convection of a liquid near a thin heated wire situated close to the horizontal surface of the liquid were studied experimentally. The temperature field was analyzed by the shadow method using a Svil' 80 instrument, and the velocity field by observing the motion of light-scattering particles. Universal profiles of the horizontal velocity and vertical temperature gradient were derived by making scale transformations of the spatial profiles measured in various cross sections of the heated zone for several values of the power developed by the wire.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 139–142, November–December, 1970.  相似文献   

8.
An experimental study on pulsating turbulent flow of sand-water suspension was carried out. The objective was to investigate the effect of pulsating flow parameters, such as, frequency and amplitude on the critical velocity, the pressure drop per unit length of pipeline and hence the energy requirements for hydraulic transportation of a unit mass of solids. The apparatus was constructed as a closed loop of 11.4 m length and 3.3 cm inner diameter of steel tubing. Solid volumetric concentrations of up to 20% were used in turbulent flow at a mean Reynolds number of 33,000–82,000. Pulsation was generated using compressed air in a controlled pulsation unit. Frequencies of 0.1–1.0 Hz and amplitude ratios of up to 30% were used. Instantaneous pressure drop and flow rate curves were digitized to calculate the energy dissipation associated with pulsation. The critical velocity in pulsating flow was found to be less than that for the corresponding steady flow at the same volumetric concentration. Energy dissipation for pulsating flow was found to be a function of both frequency and amplitude of pulsation. A possible energy saving was indicated at frequencies of 0.4–0.8 Hz and moderate amplitudes ratios of less than 25%.List of symbols A cross-section area of the tube (m2) - C D drag coefficient of sand particles - C v volumetric concentration (%) - D inner diameter of test-section pipe (m) - F frequency (Hz) - f friction factor - g gravitational constant (m/s2) - J energy dissipation of suspension (W/m)/(kg/s) - J p energy dissipation of pulsating suspension (W/m)/(kg/s) - J s energy dissipation of steady component of suspension (W/m)/(kg/s) - J w energy dissipation of pure water (W/m)/(kg/s) - L length of test-section (m) - m mass flow rate (kg/s) - P pressure drop in test-section (N/m2) - S specific gravity of sand - V instantaneous flow velocity (m/s) - V c steady flow critical velocity (m/s) - V cp pulsating flow critical velocity (m/s) - V F settling velocity of particles (m/s) - V s steady component of mean flow velocity (m/s) - dynamic viscosity (g/cm sec) - m mean density of suspension (kg/m3) - angular velocity (rad/sec) - amplitude ratio (V — V s)/V - nondimentional factor equal to - nondimentional factor equal to (VV s/V - NI nondimentional factor equal to (V 2C d/g D(S – 1)) - Re Reynolds number (V 2C d/C v g D(S – 1))  相似文献   

9.
Dynamics of Brownian particles in a turbulent channel flow   总被引:3,自引:0,他引:3  
Turbulent channel flows with suspended particles are investigated by means of numerical simulations. The fluid velocity is computed by large eddy simulation. Motion of small graphite particles with diameter of 0.01–10 m, corresponding to the Schmidt number, Sc, of 2.87 × 102–6.22 × 106 and the particle relaxation time in wall unit, p+, of 9.79 × 10–5–4.51, is computed by Lagrangian particle tracking. Relation between the particle relaxation time and the computed deposition velocity is found to be in good agreement with an empirical relation. The statistics of the particle motion in the vicinity of the wall are studied. Clear differences are found in dynamical behavior of particles with different sizes. Medium size particles show a strong dependence on the structure of the fluid flow, while small and large particles are considerably less sensitive.  相似文献   

10.
A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113×10–3 Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data.Symbols D internal column diameter (m) - g acceleration due to gravity (m s–2) - l w wake length (m) - Q v liquid volumetric flow rate (m3 s–1) - r radial position (m) - r * radial position of the wake boundary (m) - R internal column radius (m) - U s Taylor bubble velocity (m s–1) - u z axial component of the velocity (m s–1) - u r radial component of the velocity (m s–1) - z distance from the Taylor bubble nose (m) - Z * distance from the Taylor bubble nose for which the annular liquid film stabilizes (m) Dimensionless groups Re Reynolds number ( ) - N f inverse viscosity number ( ) Greek letters liquid film thickness (m) - liquid kinematic viscosity (m2 s–1) - liquid dynamic viscosity (Pa s) - liquid density (kg m–3)  相似文献   

11.
This paper deals with the visualization of swirling decaying flow in an annular cell fitted with a tangential inlet. A wall visualization method, the so-called dot-paint method, allows the determination of the flow direction on both cylinders of the cell. This study showed the complex structure of the flow field just downstream of the inlet, where a recirculation zone exists, the effects of which are more sensitive on the inner cylinder. The flow structure can be considered as three-dimensional in the whole entrance section. The swirl number and the entrance length were estimated using the measured angle of the streamlines. Experimental correlations of these two parameters, taking into account the Reynolds number and the axial distance from the tangential inlet, are given.List of symbols e = R 2R 1 thickness of the annular gap (m) - L ax entrance length of axial flow on the outer cylinder (m) - L ti length of the three-dimensional flow region on the inner cylinder (m) - L to length of the three-dimensional flow region on the outer cylinder (m) - Q v volumetric flowrate in the annular cell (m3s) - r radial position (m) - R 1 external radius of the inner cylinder (m) - R 2 internal radius of the outer cylinder (m) - Re=2eU m /v Reynolds number - Sn swirl number - T time average resulting velocity (m s) - u time average axial velocity component (ms ) - average velocity in the annulus (m s) - w time average tangential velocity component (m s) - x axial location from the tangential inlet (m) - e diameter of the tangential inlet (m) - streak angle with respect to the horizontal (degree) - angle with respect to the tangential inlet axis (degree) - gn kinematic viscosity of the working liquid (m2s)  相似文献   

12.
An analysis is performed to study the unsteady combined forced and free convection flow (mixed convection flow) of a viscous incompressible electrically conducting fluid in the vicinity of an axisymmetric stagnation point adjacent to a heated vertical surface. The unsteadiness in the flow and temperature fields is due to the free stream velocity, which varies arbitrarily with time. Both constant wall temperature and constant heat flux conditions are considered in this analysis. By using suitable transformations, the Navier–Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (, ). These transformations also uncouple the momentum and energy equations resulting in a primary axisymmetric flow, in an energy equation dependent on the primary flow and in a buoyancy-induced secondary flow dependent on both primary flow and energy. The resulting system of partial differential equations has been solved numerically by using both implicit finite-difference scheme and differential-difference method. An interesting result is that for a decelerating free stream velocity, flow reversal occurs in the primary flow after certain instant of time and the magnetic field delays or prevents the flow reversal. The surface heat transfer and the surface shear stress in the primary flow increase with the magnetic field, but the surface shear stress in the buoyancy-induced secondary flow decreases. Further the heat transfer increases with the Prandtl number, but the surface shear stress in the secondary flow decreases.  相似文献   

13.
An analysis is carried out to study the effects of localized heating (cooling), suction (injection), buoyancy forces and magnetic field for the mixed convection flow on a heated vertical plate. The localized heating or cooling introduces a finite discontinuity in the mathematical formulation of the problem and increases its complexity. In order to overcome this difficulty, a non-uniform distribution of wall temperature is taken at finite sections of the plate. The nonlinear coupled parabolic partial differential equations governing the flow have been solved by using an implicit finite-difference scheme. The effect of the localized heating or cooling is found to be very significant on the heat transfer, but its effect on the skin friction is comparatively small. The buoyancy, magnetic and suction parameters increase the skin friction and heat transfer. The positive buoyancy force (beyond a certain value) causes an overshoot in the velocity profiles.A mass transfer constant - B magnetic field - Cfx skin friction coefficient in the x-direction - Cp specific heat at constant pressure, kJ.kg–1.K - Cv specific heat at constant volume, kJ.kg–1.K–1 - E electric field - g acceleration due to gravity, 9.81 m.s–2 - Gr Grashof number - h heat transfer coefficient, W.m2.K–1 - Ha Hartmann number - k thermal conductivity, W.m–1.K - L characteristic length, m - M magnetic parameter - Nux local Nusselt number - p pressure, Pa, N.m–2 - Pr Prandtl number - q heat flux, W.m–2 - Re Reynolds number - Rem magnetic Reynolds number - T temperature, K - To constant plate temperature, K - u,v velocity components, m.s–1 - V characteristic velocity, m.s–1 - x,y Cartesian coordinates - thermal diffusivity, m2.s–1 - coefficient of thermal expansion, K–1 - , transformed similarity variables - dynamic viscosity, kg.m–1.s–1 - 0 magnetic permeability - kinematic viscosity, m2.s–1 - density, kg.m–3 - buoyancy parameter - electrical conductivity - stream function, m2.s–1 - dimensionless constant - dimensionless temperature, K - w, conditions at the wall and at infinity  相似文献   

14.
Magyari  E.  Keller  B. 《Transport in Porous Media》2003,53(1):105-115
The quasi-parallel regime of a Darcy–Boussinesq boundary-layer flow over a permeable vertical flat plate adjacent to a fluid saturated porous medium is considered. Quasi-parallel means here a plane flow with a constant transversal velocity v=–v 0 directed perpendicularly towards the vertical surface, where a lateral suction with the same velocity –v 0 is applied. The plate is held at a constant temperature T w which coincides with the ambient temperature T of the fluid. The heat released by viscous dissipation induces a density gradient in the fluid. Thus, although T w=T , a thermal convection occurs. The steady regime of this self-sustaining buoyant flow has been examined in detail. Wall jet-like profiles with a continuous but finite spectrum of the momentum flow have been found. These self-sustaining buoyant jets show a universal behavior, that is, there exist certain length, velocity and temperature scales such that the flow characteristics become independent of the (constant) material properties of the fluid and the porous medium as well.  相似文献   

15.
Landslide generated impulse waves. 2. Hydrodynamic impact craters   总被引:4,自引:0,他引:4  
Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. Digital particle image velocimetry (PIV) was applied to the landslide impact and wave generation. Areas of interest up to 0.8 m by 0.8 m were investigated. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into the kinematics of the wave generation process. Differential estimates such as vorticity, divergence, and elongational and shear strain were extracted from the velocity vector fields. At high impact velocities flow separation occurred on the slide shoulder resulting in a hydrodynamic impact crater, whereas at low impact velocities no flow detachment was observed. The hydrodynamic impact craters may be distinguished into outward and backward collapsing impact craters. The maximum crater volume, which corresponds to the water displacement volume, exceeded the landslide volume by up to an order of magnitude. The water displacement caused by the landslide generated the first wave crest and the collapse of the air cavity followed by a run-up along the slide ramp issued the second wave crest. The extracted water displacement curves may replace the complex wave generation process in numerical models. The water displacement and displacement rate were described by multiple regressions of the following three dimensionless quantities: the slide Froude number, the relative slide volume, and the relative slide thickness. The slide Froude number was identified as the dominant parameter.List of symbols a wave amplitude (L) - b slide width (L) - c wave celerity (LT–1) - d g granulate grain diameter (L) - d p seeding particle diameter (L) - F slide Froude number - g gravitational acceleration (LT–2) - h stillwater depth (L) - H wave height (L) - l s slide length (L) - L wave length (L) - M magnification - m s slide mass (M) - n por slide porosity - Q d water displacement rate (L3) - Q D maximum water displacement rate (L3) - Q s maximum slide displacement rate - s slide thickness (L) - S relative slide thickness - t time after impact (T) - t D time of maximum water displacement volume (L3) - t qD time of maximum water displacement rate (L3) - t si slide impact duration (T) - t sd duration of subaqueous slide motion (T) - T wave period (T) - v velocity (LT–1) - v p particle velocity (LT–1) - v px streamwise horizontal component of particle velocity (LT–1) - v pz vertical component of particle velocity (LT–1) - v s slide centroid velocity at impact (LT–1) - V dimensionless slide volume - V d water displacement volume (L3) - V D maximum water displacement volume (L3) - V s slide volume (L3) - x streamwise coordinate (L) - z vertical coordinate (L) - slide impact angle (°) - bed friction angle (°) - x mean particle image x-displacement in interrogation window (L) - x random displacement x error (L) - tot total random velocity v error (LT–1) - xx streamwise horizontal elongational strain component (1/T) - xz shear strain component (1/T) - zx shear strain component (1/T) - zz vertical elongational strain component (1/T) - water surface displacement (L) - density (ML–3) - g granulate density (ML–3) - p particle density (ML–3) - s mean slide density (ML–3) - w water density (ML–3) - granulate internal friction angle (°) - y vorticity vector component (out-of-plane) (1/T)  相似文献   

16.
The present work examines the turbulent flow in an enclosed rotor–stator system subjected to heat transfer effects. Besides their fundamental importance as three-dimensional prototype flows, such flows arise in many industrial applications but also in many geophysical and astrophysical settings. Large eddy simulations (LES) are here performed using a spectral vanishing viscosity technique. The LES results have already been favorably compared to velocity measurements in the isothermal case (Séverac, E., Poncet, S., Serre, E., Chauve, M.P., 2007. Large eddy simulation and measurements of turbulent enclosed rotor–stator flows. Phys. Fluids, 19, 085113) for a large range of Reynolds numbers 105Re=Ωb2/ν106, in an annular cavity of large aspect ratio G=(b-a)/H=5 and weak curvature parameter Rm=(b-a)/(b+a)=1.8 (a,b the inner and outer radii of the rotor and H the interdisk spacing). The purpose of this paper is to extend these previous results in the non-isothermal case using the Boussinesq approximation to take into account the buoyancy effects. Thus, the effects of thermal convection have been examined for a turbulent flow Re=106 of air in the same rotor–stator system for Rayleigh numbers up to Ra=108. These LES results provide accurate, instantaneous quantities which are of interest in understanding the physics of turbulent flows and heat transfers in an interdisk cavity. Even at high Rayleigh numbers, the structure of the iso-values of the instantaneous normal temperature gradient at the disk surfaces resembles the one of the iso-values of the tangential velocity with large spiral arms along the rotor and more thin structures along the stator. The averaged results show small effects of density variation on the mean and turbulent fields. The turbulent Prandtl number is a decreasing function of the distance to the wall with 1.4 close to the disks and about 0.3 in the outer layers. The local Nusselt number is found to be proportional to the local Reynolds number to the power 0.7. The evolution of the averaged Bolgiano length scale LB with the Rayleigh number indicates that temperature fluctuations may have a large influence on the dynamics only at the largest scales of the system for Ra107, since LB remains lower than the thermal boundary layer thicknesses.  相似文献   

17.
Landslide generated impulse waves.   总被引:4,自引:0,他引:4  
Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. Digital particle image velocimetry (PIV) was applied to the landslide impact and wave generation. Areas of interest up to 0.8 m by 0.8 m were investigated. The challenges posed to the measurement system in an extremely unsteady three-phase flow consisting of granular matter, air, and water were considered. The complex flow phenomena in the first stage of impulse wave initiation are: high-speed granular slide impact, slide deformation and penetration into the fluid, flow separation, hydrodynamic impact crater formation, and wave generation. During this first stage the three phases are separated along sharp interfaces changing significantly within time and space. Digital masking techniques are applied to distinguish between phases thereafter allowing phase separated image processing. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into the kinematics of the wave generation process. Differential estimates such as vorticity, divergence, elongational, and shear strain were extracted from the velocity vector fields. The fundamental assumption of irrotational flow in the Laplace equation was confirmed experimentally for these non-linear waves. Applicability of PIV at large scale as well as to flows with large velocity gradients is highlighted.List of symbols a wave amplitude (L) - c wave celerity (LT–1) - ddiff diffraction limited minimum particle image diameter (L) - de diffracted particle image diameter (L) - dg granulate grain diameter (L) - dp seeding particle diameter (L) - d recorded particle image diameter (L) - f focal length (L) - f# f number (-) - F slide Froude number (-) - g gravitational acceleration (LT–2) - h still-water depth (L) - H wave height (L) - ls slide length (L) - L wavelength (L) - M magnification (-) - ms slide mass (M) - n refractive index (-) - npor slide porosity (-) - Niw number of seeding particles in an interrogation window (-) - Npair number of detected particle image pairs in window (-) - p interrogation window size p×p pixels; 1 pixel=9 m (L) - P probability (-) - Pil probability of in-plane loss of particle (-) - Pol probability of out-of-plane loss of particle (-) - s slide thickness (L) - S relative slide thickness (-) - t time after impact (T) - T wave period (T) - v velocity (LT–1) - vp particle velocity (LT–1) - vpx streamwise horizontal component of particle velocity (LT–1) - vpy crosswise horizontal component of particle velocity (LT–1) - vpz vertical component of particle velocity (LT–1) - vs slide centroid velocity at impact (LT–1) - V dimensionless slide volume (-) - Viw interrogation volume (L3) - Vs slide volume (L3) - x streamwise coordinate (L) - xip area of view x dimension in image plane (L) - z vertical coordinate (L) - slide impact angle (°) - bed friction angle (°) - y depth of field (L) - t laser pulse separation (T) - x mean particle image x displacement in interrogation window (L) - x random displacement x error (L) - v random velocity v error (LT–1) - tot total random velocity v error (LT–1) - bias velocity v error due to biased correlation analysis (LT–1) - optics velocity v error due to optical imaging errors (LT–1) - track velocity v error due to particle flow tracking error (LT–1) - xx streamwise horizontal elongational strain component (1/T) - xz shear strain component (1/T) - zx shear strain component (1/T) - zz vertical elongational strain component (1/T) - water surface displacement (L) - wavelength (L) - dynamic viscosity (ML–1T–1) - density (ML–3) - g granulate density (ML–3) - p particle density (ML–3) - s mean slide density (ML–3) - w water density (ML–3) - granulate internal friction angle (°) - y vorticity vector component (out-of-plane) (1/T)  相似文献   

18.
The results are given of an experimental investigation of the flow in the initial section of a turbulent underexpanded jet exhausting from a profiled nozzle with Mach number M a = 2.56 at the exit into a parallel stream with Mach number M = 3.1. Analysis of the results of measurement of the fields of the total head p0 and the stagnation temperature T0 in conjunction with results of calculation of a jet of an ideal gas make it possible to construct the velocity profile in the mixing layer of the underexpanded jet in the parallel supersonic flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 161–163, January–February, 1981.  相似文献   

19.
An investigation is made of return electric currents in electrogasdynamic flows for laboratory sources of unipolar charged particles. These currents play an important role in the process of airplane electrification as a result of the work of jet engines. Models have been built, making it possible to study the behavior of return currents outside and inside an axisymmetric electrogasdynamic flow, in the absence (single-contour source) and the presence (double contour source) of an external annular neutral jet. It is shown that a rise in the return current J outside an electrogasdynamic jet is accompanied by a decrease in the take-off current J °. A decrease in the relative distance L from the source to an external grounded surface and an increase in the ratiov of the velocity of the external neutral jet to the velocity of the electrogasdynamic flow lowers J in both grounded and insulated models; in the latter case, where J ° J°0, there is an appreciable return current outside the jet. With an increase in the potential of the source from =0 to the floating potential, the current J rises, attaining a maximum, and then decreases. This effect is observed also when J=0 in both grounded and insulated models. For the case L–1,v=1, the theoretical and experimental dependences of J on the potential of the source , retarding the charged particles of the flow under transitional conditions, are in satisfactory agreement.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 127–134, January–February, 1978.In conclusion, the authors thank A. B. Vatazhin for his interest in the work, and A. P. Strekal and V. F. Kudryashov for their participation in the experiments.  相似文献   

20.
Two-dimensional flow fields and temperature boundary layer profiles around a heated and rotating circular cylinder in crossflow were experimentally investigated for a subcritical freestream-Reynolds-number 5.6 · 104 corresponding to a flow velocity of 7 m/s. Test parameter was the ratio of free stream velocity to peripheral speed, which encompasses the range between zero and 2.5. An electronically-controlled hot wire measurement technique, practicable for the requirements of 1–2 mm boundary layer thickness, was used. The numerous reliable test results confirm previous reported experiments. Characteristic features in heat transfer are discussed.List of symbols C b correction factor for blockage - n rotation rate in rpm - r radial coordinate - R cylinder radius - Re Reynolds-number = U 2R/v - Re R circumferential Reynolds-number = U R 2R/v - T local temperature - U velocity - = U · C b/U R velocity ratio of air flow and cylinder surface, corrected for blockage - v kinematic viscosity - = TT /T wT non-dimensional temperature Indices undisturbed flow conditions - w wall - R circumferential - c critical Dedicated to Alfred Walz on the occasion of his 80th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号