首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanomaterials with both superhydrophobic surface properties as well as photocatalytic activities could have important industrial applications. Herein, we synthesized CeVO4 nanocrystals with hexagonal nanoplate structures from the reaction of decavanadate (K6V10O28⋅9 H2O) and CeCl3⋅H2O precursors via a hydrothermal method. This synthetic route has four advantages: 1) the reaction condition is relatively mild, 2) it doesn′t need surfactants or templates, 3) it requires no expensive equipment, and 4) products are of higher purity. During synthesis, solution pH, and reaction temperature were found to play important roles in determining the growth process and final morphologies of the CeVO4 products. These products were characterized spectrophotometrically and via scanning and transmission electron microscopy. Furthermore, the wettability of the as-synthesized film CeVO4 nanoplates was studied by measuring water contact angle (CA). The largest CA measured was at 169.5 ° for a glass substrate treated with 0.06 g mL−1 CeVO4 followed by 2 % 1 H, 1 H, 2 H, 2 H-perfluorodecyltriethoxysilane. Finally, the CeVO4 nanoplates exhibited excellent photocatalytic activity in degradation of rhodamine B (RhB) under UV irradiation and was stable even after repeated cycles of use.  相似文献   

2.
Nanoparticles of cerium oxide (CeO2-NPs), as a metal oxide of rare earth, have found an important role in improving technologies such as polishing, the degradation of harmful industrial dyes and even the treatment of some diseases. Therefore, the development of quick and inexpensive production methods for CeO2-NPs is sought by researchers. In the present study, we report the biosynthesis of CeO2-NPs using aqueous extract of Salvadora persica. Synthesized nanoparticles were investigated through powder X-ray diffraction (PXRD), ultraviolet–visible (UV–vis), Fourier transform infrared, transmission electron microscope (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray and Raman techniques. The UV–vis result shows an absorption peak at 325 nm, which confirms the formation of CeO2-NPs. The band-gap of synthesized nanoparticles (4.1 eV) is higher than in its bulk state. PXRD and Raman show a crystalline fluorite cubic structure for synthesized nanoparticles. The morphology of synthesized nanoparticles shows a uniform and almost spherical shape via TEM and FESEM images. The particles size was estimated in the range of 10–15 nm. Cytotoxic activity of synthesized nanoparticles was determined through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay against a colon (HT-29) cancer cell line. The results did not show any significant cytotoxic effect for synthesized samples even for concentration higher than 800 μg/mL. Hence, CeO2-NPs were synthesized using a natural source; the procedure was rapid with good productivity and biosynthesized nanoparticles were non-toxic.  相似文献   

3.
Uniform CeO2 nanoparticles were synthesized via a facile sonochemical reaction between ceric ammonium nitrate and ammonia. Nanoparticles were synthesized via a surfactant free reaction at room temperature in solvent of water. Products were characterized using X-ray diffraction, scanning electron microscopy, photoluminescence (PL) spectroscopy, and energy dispersive X-ray analysis. The effect of different parameters such as precursor, power of pulsation, surfactant and reaction time on the morphology of the products was investigated. It was found that the as-obtained CeO2 nanoparticles exhibit a strong PL peak at 381 nm at room temperature that can be ascribed to the high level transition in the CeO2 semiconductor. The photocatalytic behavior of CeO2 nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. The results show that CeO2 nanoparticles are promising materials with excellent performance in photocatalytic applications.  相似文献   

4.
The primary objective of this research is to investigate the reduction of 4‐nitroaniline (4‐NA) and 2‐nitroaniline (2‐NA) using synthesized copper ferrite nanoparticles (NPs) via facile one‐step hydrothermal method as a heterogeneous nano‐catalyst. Nitroanilines were reduced in the presence and without the catalyst with a constant amount (100 mg) of reducing agent of sodium borohydride (NaBH4) at room temperature in water to amino compounds. To characterize the functional groups, size, structure, and morphology of as‐prepared magnetic NPs, FTIR, XRD, SEM, and TEM were employed. The UV‐Vis spectrum was utilized to explore the catalytic effect of CuFe2O4. The outcomes revealed that the synthesized CuFe2O4 as a heterogeneous magnetic nano‐catalyst catalyzed the reduction of 4‐NA and 2‐NA significantly faster than other candidate catalysts. The outcomes demonstrated that the catalyst catalyzed 4‐nitroaniline to para‐phenylenediamine (p‐PDA) and 2‐nitroaniline to ortho‐phenylenediamine (o‐PDA) with a constant rate of 7.49×10−2 s−1 and 3.19×10−2 s−1, and conversion percentage of 96.5 and 95.6, in 40 s and 90 s, sequentially. Furthermore, the nanoparticles could be recovered by a magnetic separation method and reused for six consecutive cycles without remarkable loss of catalytic ability.  相似文献   

5.
Transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and Fourier transform infrared (FTIR) spectroscopy were applied to evaluate the tin dioxide nanoparticles (SnO2 NPs) amalgamated by the sol-gel process. XRD was used to examine the tetragonal-shaped crystallite with an average size of 26.95 (±1) nm, whereas the average particle size estimated from the TEM micrograph is 20.59 (±2) nm. A dose-dependent antifun3al activity was performed against two fungal species, and the activity was observed to be increased with an increase in the concentration of SnO2 NPs. The photocatalytic activity of SnO2 NPs in aqueous media was tested using Rhodamine 6G (Rh-6G) under solar light illumination. The Rh-6G was degraded at a rate of 0.96 × 10−2 min for a total of 94.18 percent in 350 min.  相似文献   

6.
In this paper, CeO2 and cobalt-doped CeO2 nanorods synthesized by surfactant free co-precipitation method. The microstructures of the synthesized products were characterized by XRD, FESEM and TEM. The structural properties of the grown nanorods have been investigated using electron diffraction and X-ray diffraction. High resolution transmission electron microscopy studies show the polycrystalline nature of the Co-doped cerium oxide nanorods with a length of about 300?nm and a diameter of about 10?nm were produced. The X-ray Photoelectron spectrum confirms the presence of cobalt in cerium oxide nanorods. From BET, the specific surface area of the CeO2 (Co-doped) nanostructures (131 m2?g??) is found to be significantly higher than that of pure CeO2 (52 m2?g??). The Co-doped cerium nanorods exhibit an excellent photocatalytic performance in rapidly degrading azodyes acid orange 7 (AO7) in aqueous solution under UV illumination.  相似文献   

7.
The objective of this study is to synthesize ZnO and Mg doped ZnO (Zn1−xMgxO) nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and magnesium acetate tetrahydrate (Mg(CH3COO)2.4H2O) as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of Zn1−xMgxO nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO (Zn1−xMgxO) nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of Zn0.90 Mg0.10 O photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli ( E. coli ) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicatedthat the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli . While Zn0.90Mg0.10 O totally inhibited the growth of E. coli , upper and lower dopant concentrations did not show antibacterial activity.  相似文献   

8.
《印度化学会志》2023,100(8):101069
This study focuses on the microwave-assisted synthesis of Cr2O3 nanoparticles for the development of antibacterial materials. Characterization techniques including FT-IR spectroscopy, UV–vis spectroscopy, SEM-EDX, and XRD, were employed to analyze the nanoparticles' properties. The antibacterial efficacy against E. coli, S. aureus, B. subtilis, and P. aeruginosa was evaluated, with significant activity observed against all pathogens, highlighting their potential as antibacterial materials. The novelty of this study lies in the synthesis of Cr2O3 nanoparticles and their application as potent antibacterial agents against various pathogens. The results of XRD study concludes the average size of Cr2O3 nanoparticles as 49.96 nm. The synthesized Cr2O3 nanoparticles demonstrated a good zone of inhibition against E. coli (22 mm), S. aureus (19 mm), B. subtilis (18 mm), and P. aeruginosa (21 mm). The findings of the study suggest that Cr2O3NPs have potential as a novel antibacterial agent, and further research in this area could lead to the development of new and effective treatments for bacterial infections.  相似文献   

9.
In the present studies, renewable and nontoxic biopolymer, pectin, was extracted from Indian red pomelo fruit peels and used for the synthesis of cerium oxide nanoparticles (CeO2-NPs) having bio-therapeutic potential. The structural information of extracted pectin was investigated by FTIR and NMR spectroscopic techniques. Physicochemical characteristics of this pectin suggested its application in the synthesis of metal oxide nanoparticles. Using this pectin as a template, CeO2-NPs were synthesized by simple, one step and eco-friendly approach. The UV–Vis spectrum of synthesized CeO2-NPs exhibited a characteristic absorption peak at wavelength 345 nm, which can be assigned to its intrinsic band gap (3.59 eV) absorption. Photoluminescence measurements of CeO2-NPs revealed that the broad emission was composed of seven different bands. FTIR analysis ensured involvement of pectin in the formation and stabilization of CeO2-NPs. FT-Raman spectra showed a sharp Raman active mode peak at 461.8 cm?1 due to a symmetrical stretching mode of Ce–O vibration. DLS, FESEM, EDX, and XRD analysis showed that the CeO2-NPs prepared were polydispersed, spherical shaped with a cubic fluorite structure and average particle size ≤40 nm. These CeO2-NPs displayed broad spectrum antimicrobial activity, antioxidant potential, and non-cytotoxic nature.  相似文献   

10.
This work describes an environmental-friendly preparation of ZnO nanoparticles using aqueous oat extract. The advanced electrochemical and optical features of green synthesized ZnONPs displayed excellent antibacterial activity and exhibited an important role in pharmaceutical determinations. The formation of nanoscale ZnO was confirmed using various spectroscopic and microscopic investigations. The formed nanoparticles were found to be around 100 nm. The as-prepared ZnONPs were monitored for their antibacterial potential against different bacterial strains. The inhibition zones for ZnONPs were found as Escherichia coli (16 mm), Pseudomonas aeruginosa (17 mm), Staphylococcus aureus (12 mm) and Bacillus subtilis (11 mm) using a 30-µg mL−1 sample concentration. In addition, ZnONPs exhibited significant antioxidant effects, from 58 to 67%, with an average IC50 value of 0.88 ± 0.03 scavenging activity and from 53 to 71% (IC50 value of 0.73 ± 0.05) versus the scavenging free radicals DPPH and ABTS, respectively. The photocatalytic potential of ZnONPs for Rhodamine B dye degradation under UV irradiation was calculated. The photodegradation process was carried out as a function of time-dependent and complete degradation (nearly 98%), with color removal after 120 min. Conclusively, the synthesized ZnONPs using oat biomass might provide a great promise in the future for biomedical applications.  相似文献   

11.
Metal oxide nanoparticles synthesized by the biological method represent the most recent research in nanotechnology. This study reports the rapid and ecofriendly approach for the synthesis of CeO2 nanoparticles mediated using the Abelmoschus esculentus extract. The medicinal plant extract acts as both a reducing and stabilizing agent. The characterization of CeO2 NPs was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FTIR). The in vitro cytotoxicity of green synthesized CeO2 was assessed against cervical cancerous cells (HeLa). The exposure of CeO2 to HeLa cells at 10–125 µg/mL caused a loss in cellular viability against cervical cancerous cells in a dose-dependent manner. The antibacterial activity of the CeO2 was assessed against S. aureus and K. pneumonia. A significant improvement in wound-healing progression was observed when cerium oxide nanoparticles were incorporated into the chitosan hydrogel membrane as a wound dressing.  相似文献   

12.
Constructing photocatalysts to promote hydrogen evolution and carbon dioxide photoreduction into solar fuels is of vital importance. The design and establishment of an S-scheme heterojunction system is one of the most feasible approaches to facilitate the separation and transfer of photogenerated charge carriers and obtain powerful photoredox capabilities for boosting photocatalytic performance. Herein, a zero-dimensional/one-dimensional S-scheme heterojunction composed of CdSe quantum dots and polymeric carbon nitride nanorods (CdSe/CN) is created and constructed via a linker-assisted hybridization approach. The CdSe/CN composites exhibit superior photocatalytic activity in water splitting and promoted carbon dioxide conversion performance compared with CN nanorods and CdSe quantum dots. The best efficiency in photocatalytic water splitting (10.2% apparent quantum yield at 420 nm irradiation, 20.1 mmol g−1 h−1 hydrogen evolution rate) and CO2 reduction (0.77 mmol g−1 h−1 CO production rate) was achieved by 5%CdSe/CN composites. The significantly improved photocatalytic reactivity of CdSe/CN composites primarily originates from the emergence of an internal electric field in the zero-dimensional/one-dimensional S-scheme heterojunction, which could greatly improve the photoinduced charge-carrier separation. This work underlines the possibility of employing polymeric carbon nitride nanostructures as appropriate platforms to establish highly active S-scheme heterojunction photocatalysts for solar fuel production.  相似文献   

13.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

14.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

15.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

16.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

17.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

18.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

19.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

20.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号