首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. I derive a posteriori error estimates for two-point boundary value problems and parabolic equations in one dimension based on interpolation error estimates. The interpolation error estimates are obtained from an extension of the error formula for the Lagrange interpolating polynomial in the case of symmetrically-spaced interpolation points. From this formula pointwise and seminorm a priori estimates of the interpolation error are derived. The interpolant in conjunction with the a priori estimates is used to obtain asymptotically exact a posteriori error estimates of the interpolation error. These a posteriori error estimates are extended to linear two-point boundary problems and parabolic equations. Computational results demonstrate the convergence of a posteriori error estimates and their effectiveness when combined with an hp-adaptive code for solving parabolic systems. Received April 17, 2000 / Revised version received September 25, 2000 / Published online May 30, 2001  相似文献   

2.
ABSTRACT

A posteriori error estimates for semidiscrete finite element methods for a nonlinear parabolic initial-boundary value problem are considered. The error estimates are obtained by solving local parabolic or elliptic equations for corrections to the solution on each element. The convergence results improve previous results where unnecessary assumptions are imposed on the approximate solution and the elliptic projection of the exact solution.  相似文献   

3.
Summary. In this paper we are interested in two phase flow problems in porous media. We use a Dual Mesh Method to discretize this problem with finite volume schemes. In a simplified case (elliptic - hyperbolic system) we prove the convergence of approximate solutions to the exact solutions. We use the Dual Mesh Method in physically complex problems (heterogeneous cases with non constant total mobility). We validate numerically the Dual Mesh Method on practical examples by computing error estimates for different test-cases. Received March 21, 1997 / Revised version received October 13, 1997  相似文献   

4.
We describe an adaptive mesh refinement finite element method-of-lines procedure for solving one-dimensional parabolic partial differential equations. Solutions are calculated using Galerkin's method with a piecewise hierarchical polynomial basis in space and singly implicit Runge-Kutta (SIRK) methods in time. A modified SIRK formulation eliminates a linear systems solution that is required by the traditional SIRK formulation and leads to a new reduced-order interpolation formula. Stability and temporal error estimation techniques allow acceptance of approximate solutions at intermediate stages, yielding increased efficiency when solving partial differential equations. A priori energy estimates of the local discretization error are obtained for a nonlinear scalar problem. A posteriori estimates of local spatial discretization errors, obtained by order variation, are used with the a priori error estimates to control the adaptive mesh refinement strategy. Computational results suggest convergence of the a posteriori error estimate to the exact discretization error and verify the utility of the adaptive technique.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR-90-0194; the U.S. Army Research Office under Contract Number DAAL 03-91-G-0215; by the National Science Foundation under Grant Number CDA-8805910; and by a grant from the Committee on Research, Tulane University.  相似文献   

5.
Summary Backward differentiation methods up to orderk=5 are applied to solve linear ordinary and partial (parabolic) differential equations where in the second case the space variables are discretized by Galerkin procedures. Using a mean square norm over all considered time levels a-priori error estimates are derived. The emphasis of the results lies on the fact that the obtained error bounds do not depend on a Lipschitz constant and the dimension of the basic system of ordinary differential equations even though this system is allowed to have time-varying coefficients. It is therefore possible to use the bounds to estimate the error of systems with arbitrary varying dimension as they arise in the finite element regression of parabolic problems.  相似文献   

6.
Summary Consider the solution of one-dimensional linear initial-boundary value problems by a finite element method of lines using a piecewiseP th -degree polynomial basis. A posteriori estimates of the discretization error are obtained as the solutions of either local parabolic or local elliptic finite element problems using piecewise polynomial corrections of degreep+1 that vanish at element ends. Error estimates computed in this manner are shown to converge in energy under mesh refinement to the exact finite element discretization error. Computational results indicate that the error estimates are robust over a wide range of mesh spacings and polynomial degrees and are, furthermore, applicable in situations that are not supported by the analysis.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR 90-0194; by the U.S. Army Research Office under Contract Number DAAL03-91-G-0215; and by the National Science Foundation under Institutional Infrastructure Grant Number CDA-8805910  相似文献   

7.
Degenerate parabolic equations of Kolmogorov type occur in many areas of analysis and applied mathematics. In their simplest form these equations were introduced by Kolmogorov in 1934 to describe the probability density of the positions and velocities of particles but the equations are also used as prototypes for evolution equations arising in the kinetic theory of gases. More recently equations of Kolmogorov type have also turned out to be relevant in option pricing in the setting of certain models for stochastic volatility and in the pricing of Asian options. The purpose of this paper is to numerically solve the Cauchy problem, for a general class of second order degenerate parabolic differential operators of Kolmogorov type with variable coefficients, using a posteriori error estimates and an algorithm for adaptive weak approximation of stochastic differential equations. Furthermore, we show how to apply these results in the context of mathematical finance and option pricing. The approach outlined in this paper circumvents many of the problems confronted by any deterministic approach based on, for example, a finite-difference discretization of the partial differential equation in itself. These problems are caused by the fact that the natural setting for degenerate parabolic differential operators of Kolmogorov type is that of a Lie group much more involved than the standard Euclidean Lie group of translations, the latter being relevant in the case of uniformly elliptic parabolic operators.  相似文献   

8.
This work concerns analysis and error estimates for optimal control problems related to implicit parabolic equations. The minimization of the tracking functional subject to implicit parabolic equations is examined. Existence of an optimal solution is proved and an optimality system of equations is derived. Semi-discrete (in space) error estimates for the finite element approximations of the optimality system are presented. These estimates are symmetric and applicable for higher-order discretizations. Finally, fully-discrete error estimates of arbitrarily high-order are presented based on a discontinuous Galerkin (in time) and conforming (in space) scheme. Two examples related to the Lagrangian moving mesh Galerkin formulation for the convection-diffusion equation are described.  相似文献   

9.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

10.
A mollification method for ill-posed problems   总被引:3,自引:0,他引:3  
Summary. A mollification method for a class of ill-posed problems is suggested. The idea of the method is very simple and natural: if the data are given inexactly then we try to find a sequence of ``mollification operators" which map the improper data into well-posedness classes of the problem (mollify the improper data). Within these mollified data our problem becomes well-posed. And when these facts are in hand we try to obtain error estimates and optimal or ``quasi-optimal" mollification parameters. The method is working not only for problems in Hilbert spaces, but also for problems in Banach spaces. Applications of the method to concrete problems, like numerical differentiation, parabolic equations backwards in time, the Cauchy problem for the Laplace equation, one- and multidimensional non-characteristic Cauchy problems for parabolic equations (in infinite or finite domains),... give us very sharp stability estimates of H\"older continuous type. In these cases the method is optimal in the sense that it gives the same order of H\"older continuous dependence on the data as for the regularized problems. Furthermore, the method may be implemented numerically using fast Fourier transforms. For the first time a uniform stability estimate of H\"older continuous type of the solution of the heat equation backwards in time in the space for all could be established by our mollification method. A new simple sharp pointwise estimate of H\"older type for the weak solution of a non-characteristic Cauchy problem for parabolic equations in a finite domain is established. Received June 25, 1993 / Revised version received February 18, 1994  相似文献   

11.
In this paper we consider a hyperbolic equation, with a memory term in time, which can be seen as a singular perturbation of the heat equation with memory. The qualitative properties of the solutions of the initial boundary value problems associated with both equations are studied. We propose numerical methods for the hyperbolic and parabolic models and their stability properties are analyzed. Finally, we include numerical experiments illustrating the performance of those methods.  相似文献   

12.
Summary. An elliptic obstacle problem is approximated by piecewise linear finite elements with numerical integration on the penalty and forcing terms. This leads to diagonal nonlinearities and thereby to a practical scheme. Optimal error estimates in the maximum norm are derived. The proof is based on constructing suitable super and subsolutions that exploit the special structure of the penalization, and using quite precise pointwise error estimates for an associated linear elliptic problem with quadrature via the discrete maximum principle. Received March 19, 1993  相似文献   

13.
In this paper we study the numerical solutions to parabolic Volterra integro-differential equations in one-dimensional bounded and unbounded spatial domains. In a bounded domain, the given parabolic Volterra integro-differential equation is converted to two equivalent equations. Then, a Legendre-collocation method is used to solve them and finally a linear algebraic system is obtained. For an unbounded case, we use the algebraic mapping to transfer the problem on a bounded domain and then apply the same presented approach for the bounded domain. In both cases, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method.  相似文献   

14.
In this paper, we consider the finite element methods for solving second order elliptic and parabolic interface problems in two-dimensional convex polygonal domains. Nearly the same optimal -norm and energy-norm error estimates as for regular problems are obtained when the interfaces are of arbitrary shape but are smooth, though the regularities of the solutions are low on the whole domain. The assumptions on the finite element triangulation are reasonable and practical. Received July 7, 1996 / Revised version received March 3, 1997  相似文献   

15.
The present article deals with oblique derivative problems for some nonlinear mixed equations with parabolic degeneracy, which include the Tricomi problem as a special case. First, the formulation of the problems for the equations is given; next, the representation and estimates of solutions for the above problems are obtained; finally, the existence of solutions for the problems is proved by the successive iteration and the compactness principle of solutions of the problems. In this article, the author uses the complex method, namely, the complex functions in the elliptic domain and the hyperbolic complex functions in hyperbolic domain are used.  相似文献   

16.
In this work, the numerical approximation of a viscoelastic contact problem is studied. The classical Kelvin-Voigt constitutive law is employed, and contact is assumed with a deformable obstacle and modelled using the normal compliance condition. The variational formulation leads to a nonlinear parabolic variational equation. An existence and uniqueness result is recalled. Then, a fully discrete scheme is introduced, by using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize time derivatives. A priori error estimates recently proved for this problem are recalled. Then, an a posteriori error analysis is provided, extending some preliminary results obtained in the study of the heat equation and other parabolic equations. Upper and lower error bounds are proved. Finally, some numerical experiments are presented to demonstrate the accuracy and the numerical behaviour of the error estimates.  相似文献   

17.
Summary. We consider fully discrete approximations to a parabolic initial-boundary value problem with rough or distribution-valued initial data in two space dimensions. For discretization in time and space, we apply single step methods and the standard Galerkin method with piecewise linear test functions, respectively. For spatial discretization of the initial condition, we are however forced to use more involved constructions. Our main result is stability and error estimates of the discrete solutions. Received October 21, 1999 / Revised version received May 3, 2001 / Published online December 18, 2001  相似文献   

18.
Summary Types of boundary value problems of partial differential equations for infinite domains are discussed which can easily be transformed in such a manner as to allow estimations of error (for approximate solutions) similar to the boundary maximum principle. First, second und third boundary value problems for the outer domain of linear elliptic and certain linear and nonlinear parabolic differential equations are examined. For elliptic differential equations one of the results is that the secound boundary value problem for more than two dimensions can be included. The estimates of the paper can thus be applied to problems of flow around some object, not in the case of two but of three dimensions. This is in a certain sense a counterpart to the conformal mappings method which is successful for two but not for three dimensions. Numerical examples show that estimations of error can easily be carried out.  相似文献   

19.
In this article, a semidiscrete finite element method for parabolic optimal control problems is investigate. By using elliptic reconstruction, a posteriori error estimates for finite element discretizations of optimal control problem governed by parabolic equations with integral constraints are derived.  相似文献   

20.
Summary In this first of two papers, computable a posteriori estimates of the space discretization error in the finite element method of lines solution of parabolic equations are analyzed for time-independent space meshes. The effectiveness of the error estimator is related to conditions on the solution regularity, mesh family type, and asymptotic range for the mesh size. For clarity the results are limited to a model problem in which piecewise linear elements in one space dimension are used. The results extend straight-forwardly to systems of equations and higher order elements in one space dimension, while the higher dimensional case requires additional considerations. The theory presented here provides the basis for the analysis and adaptive construction of time-dependent space meshes, which is the subject of the second paper. Computational results show that the approach is practically very effective and suggest that it can be used for solving more general problems.The work was partially supported by ONR Contract N00014-77-C-0623  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号