首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of blue phosphorescent iridium(III) complexes 1-4 with nonconjugated N-benzylpyrazole ligands were synthesized and their structural, electrochemical, and photophysical properties were investigated. Complexes 1-4 exhibit phosphorescence with yields of 5-45 % in degassed CH2Cl2. Of the compounds, 1 showed emission that was nearly true blue at 460 nm with a lack of vibronic progression. These photophysical data clearly demonstrate that the methylene spacer of the cyclometalated N-benzylpyrazole chelate effectively interrupts the pi conjugation upon reacting with a third L X chelating chromophore. This gives a feasible synthesis for the blue phosphorescent complexes with a sufficiently large energy gap. In another approach, these complexes were investigated for their suitability for the host material in phosphorescent OLEDs. The device was synthesized by using 1 as the host for the green-emitting [Ir(ppy)3] dopant, which exhibits an external quantum conversion efficiency (EQE) of up to 11.4 % photons per electron (and 36.6 cdA(-1)), with 1931 Commission Internationale de L'Eclairage (CIE) coordinates of (0.30, 0.59), a peak power efficiency of 21.7 lmW(-1), and a maximum brightness of 32000 cdm(-2) at 14.5 V. At the practical brightness of 100 cdm(-2), the efficiency remains above 11 % and 18 lmW(-1), demonstrating its great potential as the host material for phosphorescent organic light-emitting diodes.  相似文献   

2.
Five cyclometalated iridium(III) complexes with 2‐phenylimidazo[4,5‐f][1,10]phenanthroline derivatives ( IrL1 – IrL5 ) were synthesized and developed to image and track mitochondria in living cells under two‐photon (750 nm) excitation, with two‐photon absorption cross‐sections of 48.8–65.5 GM at 750 nm. Confocal microscopy and inductive coupled plasma‐mass spectrometry (ICP‐MS) demonstrated that these complexes selectively accumulate in mitochondria within 5 min, without needing additional reagents for membrane permeabilization, or replacement of the culture medium. In addition, photobleaching experiments and luminescence measurements confirmed the photostability of these complexes under continuous laser irradiation and physiological pH resistance. Moreover, results using 3D multicellular spheroids demonstrate the proficiency of these two‐photon luminescent complexes in deep penetration imaging. Two‐photon excitation using such novel complexes of iridium(III) for exclusive visualization of mitochondria in living cells may substantially enhance practical applications of bioimaging and tracking.  相似文献   

3.
4.
Fundamental study of enzymatic nucleoside transport suffers for lack of optical probes that can be tracked noninvasively. Nucleoside transporters are integral membrane glycoproteins that mediate the salvage of nucleosides and their passage across cell membranes. The substrate recognition site is the deoxyribose sugar, often with little distinction among nucleobases. Reported here are nucleoside analogues in which emissive, cyclometalated iridium(III) complexes are “clicked” to C‐1 of deoxyribose in place of canonical nucleobases. The resulting complexes show visible luminescence at room temperature and 77 K with microsecond‐length triplet lifetimes. A representative complex is crystallographically characterized. Transport and luminescence are demonstrated in cultured human carcinoma (KB3‐1) cells.  相似文献   

5.
6.
Two new iridium(III) complexes were synthesized by introducing two trifluoromethyl groups into an ancillary ligand to develop pure-red emitters for organic light-emitting diodes (OLEDs). The electron-donating ability of the ancillary ligands is suppressed, owing to the electron-withdrawing nature of trifluoromethyl groups, which can reduce the HOMO energy levels compared with those of compounds without trifluoromethyl groups. However, the introduction of trifluoromethyl groups into the ancillary ligand has little impact on the LUMO energy levels. Therefore, a well-tuned, pure-red, excited-state energy was achieved by regulating the relative energy level between the HOMO and LUMO. OLEDs with these complexes as emitters showed high external quantum efficiencies (EQEs) of 26 % and realized high EQEs of about 25 % and fairly low driving voltages of 3.3–3.6 V for practical luminance of 1000 cd m−2, as well as excellent Commission Internationale de L'Eclairage (CIE) coordinates of (0.66, 0.33) and (0.67, 0.33); thus, this demonstrates the successful molecular design strategy by modifying the electron-donating ability of ancillary ligand.  相似文献   

7.
The phosphorescence emission of perylene bisimide derivatives has been rarely reported. Two novel ruthenium(II) and iridium(III) complexes of an azabenz‐annulated perylene bisimide (ab‐PBI), [Ru(bpy)2(ab‐PBI)][PF6]2 1 and [Cp*Ir(ab‐PBI)Cl]PF6 2 are now presented that both show NIR phosphorescence between 750–1000 nm in solution at room temperature. For an NIR emitter, the ruthenium complex 1 displays an unusually high quantum yield (Φp) of 11 % with a lifetime (τp) of 4.2 μs, while iridium complex 2 exhibits Φp<1 % and τp=33 μs. 1 and 2 are the first PBI‐metal complexes in which the spin–orbit coupling is strong enough to facilitate not only the Sn→Tn intersystem crossing of the PBI dye, but also the radiative T1→S0 transition, that is, phosphorescence.  相似文献   

8.
9.
10.
Red phosphorescent iridium(III) complexes based on fluorine‐, phenyl‐, and fluorophenyl‐substituted 2‐arylquinoline ligands were designed and synthesized. To investigate their electrophosphorescent properties, devices were fabricated with the following structure: indium tin oxide (ITO)/4,4′,4′′‐tris[2‐naphthyl(phenyl)amino]triphenylamine (2‐TNATA)/4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB)/4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP): 8 % iridium (III) complexes/bathocuproine (BCP)/tris(8‐hydroxyquinolinato)aluminum (Alq3)/8‐hydroxyquinoline lithium (Liq)/Al. All devices, which use these materials showed efficient red emissions. In particular, a device exhibited a saturated red emission with a maximum luminance, external quantum efficiency, and luminous efficiency of 14200 cd m?2, 8.44 %, and 6.58 cd A?1 at 20 mA cm?2, respectively. The CIE (x, y) coordinates of this device are (0.67, 0.33) at 12.0 V.  相似文献   

11.
The phosphorescence bioimaging and sensing applications of Iridium (III) complexes, in particular to subcellular organelle staining as well as sensing of biologically important analytes, have been reviewed here. The bioimaging applications of the metal complexes provide an attractive alternative to fluorescent organic compounds in the construction of biosensors and biolabels because of having certain advantages.  相似文献   

12.
Two phosphorescent dinuclear iridium(III) diastereomers (ΛΔ/ΔΛ) and (ΛΛ/ΔΔ) are readily separated by making use of their different solubilities in hot hexane. The bridging diarylhydrazide ligand plays an important role in the electrochemistry and photophysics of the complexes. Organic light‐emitting devices (OLEDs) that use these complexes as the green‐emissive dopants in solution‐processable single‐active‐layer architectures feature electroluminescence efficiencies that are remarkably high for dinuclear metal complexes, achieving maximum values of 37 cd A?1, 14 lm W?1, and 11 % external quantum efficiency.  相似文献   

13.
Aromatic sulfonyl groups have attracted increasing interest due to their unique electronic features. In this article, a series of IrIII complexes bearing fluorinated phenylsulfonyl groups were evaluated by density functional theory and time‐dependent density functional theory methods. To explore their phosphorescence efficiencies, factors that determine the radiative decay rate constant, kr, and the nonradiative decay rate constant, knr, were computed. As demonstrated by the results, complex 4 , which has fluorinated phenylsulfonyl groups at the 5‐positions of the phenyl rings for all three C^N ligands, was found to have the highest phosphorescence efficiencies with the largest kr and smallest knr values among these complexes. Moreover, it was found to exhibit significantly blueshifted behavior relative to complex 1 and emits in the blue region, and thus, it can serve as a highly efficient blue emitter for application in organic light‐emitting diodes. These findings successfully illustrated the structure–properties relationship and provided valuable information for the development of future highly efficient blue‐emitting phosphors.  相似文献   

14.
15.
16.
17.
Singlet–triplet dual emission has been achieved in single molecules containing triarylboron and N‐(2′‐pyridyl)‐7‐azaindole chromophores. The structure of a Pt(II) complex and its dual emission spectrum are depicted in the cover picture. In their Full Paper on page 6131 ff., S. Wang et al. demonstrate that metal chelation and nonconjugated chromophores with a common excitation wavelength facilitate singlet and triplet dual emission in solution at ambient temperature that originate from two separate parts of the molecule.

  相似文献   


18.
Two novel N-embedded polycyclic units functionalized phosphorescent iridium(III) complexes ( Ir-1 and Ir-2 ) with substituents in different positions have been prepared. Complex Ir-1 bearing the substituent at the 3-position shows a distinct blue shift single-peak emission (524 nm) with a higher luminescence efficiency (ΦPL=42 %) and shorter emission lifetime (τ=282 ns) by comparison with 4-position substitution based complex Ir-2 (ΦPL=23 %, τ=562 ns), which exhibits a dual-peak emission (564 nm and 602 nm), and phosphorescence color can be tuned from green to yellow. In addition, DFT calculations demonstrate that unusual ligand-to-metal charge transfer (3LMCT) excited state property can be found in Ir-2 , which is in contrast to metal-to-ligand charge transfer (3MLCT) excited state character in Ir-1 . This result can be attribute to strong electron-donating character and 4-position substitution effect of the unit.  相似文献   

19.
The synthesis, characterization and biological activity of four cyclometalated Ir (III) complexes ( Ir1 ‐ Ir4 ) containing different phosphine‐sulfonate ligands are reported. Most of these complexes showed good activity against A549 cancer cell lines and the human HeLa cervical cell lines. Spectroscopic properties study displays that all four complexes show rich fluorescence with emission maxima in the range of 474–510 nm. Fluorescence property of these complexes provides a tool to investigate the microscopic mechanism by confocal microscopy. Notably, the typical Ir (III) complex Ir4 can specially localize to lysosome, damage it and induce cell death via apoptosis. In addition, Ir4 enters into A549 cancer cells dominantly through energy‐dependent pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号