首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of DNA damage induced by Fenton reaction (Fe2+/H2O2) in vitro was performed based on the direct electrochemical oxidation of 8‐hydroxydeoxyguanosine (8‐OH‐dG), the biomarker of DNA oxidative damage, at an electrochemically modified glassy carbon electrode (GCE). The effects of antioxidants, such as ascorbic acid, and hydroxyl‐radical scavenger (mannitol) on the DNA damage were also investigated. 8‐OH‐dG, the oxidation product of guanine residues in DNA, has shown significantly oxidative peak on the electrochemically modified GCE. The oxidative peak current of 8‐OH‐dG was linear with the damaged DNA concentration in the range of 10–200 mg/L. The experimental results demonstrate that ascorbic acid has ambivalent effect on DNA oxidative stress. It can promote DNA oxidative damage when ascorbic acid concentration is below 1.5 mM and protect DNA from damage in the range of 1.5–2.5 mM. As a hydroxyl‐radical scavenger, mannitol inhibits significantly DNA oxidative damage. The influence of Fe2+, as reactant, and EDTA as iron chelator in the system were also studied. The proposed electrochemical method can be used for the estimation of DNA oxidative damage from new point of view.  相似文献   

2.
DU  Meng  YANG  Tao  ZHANG  Yongchun  JIAO  Kui 《中国化学》2009,27(10):1886-1890
The positively charged nano‐ZnO and negatively charged natural DNA were alternately adsorbed on the surface of a gold electrode, forming (ZnO/dsDNA)nlayer‐by‐layer films. Valuable dynamic information for controlling the formation and growth of the films was obtained by cyclic voltammetry and electrochemical impedance spectroscopy. Differential pulse voltammetric (DPV) measurements showed that the electroactive probe methylene blue (MB) could be loaded in the (ZnO/dsDNA)nfilms from its solution, and then released from the films into Britton‐Robinson (B‐R) buffer. The complete reloading of MB in the films could be realized by immersing the films in MB solution again. However, after incubation in the solution of carcinogenic metal nickel, the damaged (ZnO/dsDNA)n films could not return to their original and fully‐loaded state, and showed smaller DPV peak currents. The results demonstrated that the DNA damage induced by the hydroxyl radical could be achieved by electrochemistry.  相似文献   

3.
Abstract

The classical Fenton system composed of Fe(II) and H2O2 uses harsh oxidative conditions and cannot realistically simulate physiological oxidations which are less severe. Here, reactive oxygen species (ROS) were generated with a combination of CoSO4 and H2O2 to provide milder conditions. DNA was used as a biologically meaningful probe for monitoring the oxidative conversion. Oxidative hazard on DNA was accomplished in ammonia/ammonium chloride buffer at 37?°C, and the Fenton reaction was stopped with trichloroacetic acid (TCA). A suitable aliquot of this solution was added to cupric ion reducing antioxidant capacity (CUPRAC) reaction mixture, and the absorbance at 450?nm was recorded. The oxidized species derived from DNA were CUPRAC-reactive while intact DNA was not. The protective effects of antioxidants (AOxs), known to have radical scavenging effects, were tested; green tea and a synthetic fetal bovine serum (FBS) were also successfully used as real ROS scavengers. Although the classical iron-based Fenton procedure applied in ethanol medium generated CUPRAC-responsive products, the proposed system was perfectly ethanol-tolerant, enabling the CUPRAC measurement of DNA oxidation products against an unaffected reagent blank. The protective effects of phenolic antioxidants, perfectly solubilized in ethanol, could also be measured.  相似文献   

4.
Abstract— Calf thymus DNA was irradiated with low-intensity UVA (main output at 365 nm, 2 mW cm?2 or 36 kj m 2 for 30 min), and the role of metal ions, hydrogen peroxide and reactive oxygen species (ROS) was examined. DNA damage was measured as thiobarbituric acid-reactive substances (possibly from degradation of deoxyribose) and as changes in ethidium bromide-DNA fluorescence due to unwinding from strand breaks. Under the present experimental conditions, UVA alone or in the presence of H202 had no effect on DNA but slightly enhanced the damage by iron/EDTA. Ultraviolet A strongly enhanced DNA damage (ca four- to five-fold) by the Fenton reaction system (50 μM Fe2+/100 μM EDTA + 0.5 mM H202). The results suggest that the Fenton reaction system was “photosensitized” to damage DNA by low-intensity UVA radiation. The enhanced damage by UVA was attributed in part to the reduction of Fe3+ to Fe2+. Ultraviolet A had no effect when iron (ferric or ferrous) ions were replaced by Cu2+, Zn2+, Mn2+ or Cd2+. The ROS involved in the UVA-enhanced damage to DNA by the Fenton reagents were OH and, to a lesser extent, superoxide anions. The UVA-potentiated DNA damage by the Fenton reaction system was then used to examine the protective effect of para-aminobenzoate (PABA), a UVB-absorbing sunscreen that protects against photocarcinogenesis in hairless mice. The results show that PABA and mannitol dose-dependently inhibited the damage with concentrations required for 50% inhibition at 0.1 mM and 3 mM, respectively. The protection by PABA was attributed to its radical-scavenging ability because PABA does not absorb light in the UVA region. These findings may be relevant to the biological damage by UVA and suggest that PABA is useful in protection against photocarcinogenesis by wide-range UV radiation.  相似文献   

5.
We report here the electrocatalytic reduction of oxygen on thin anthraquindisulfonate (AQDS)/poplypyrrole (PPy) composite film modified electrodes and its application to the electrooxidation of azo dye‐amaranth. The polymer‐coated cathode exhibited good electrocatalytic activity towards oxygen reduction reaction (ORR), and allowed the formation of strong oxidant hydroxyl radical (.OH) in the medium via Electro‐Fenton's reaction between cathodically generated H2O2 and added or regenerated Fe2+. The electrochemical behaviors of ORR in various pH solutions were described using cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometric (CA) techniques. The effect of solution pH on amaranth mineralization by the Fe2+/H2O2 and Fe3+/H2O2 electrooxidation systems was studied. In addition, the long‐term electrocatalytic activity and stability of the AQDS/PPy composite film during multiple experimental runs were also examined electrochemically.  相似文献   

6.
Oxidative damage of DNA was assessed with glassy carbon electrode (GCE) coated with electropolymerized Methylene Blue (MB). For this purpose, DNA solution was first mixed with an oxidant (Fenton reagent, H2O2 alone and in the presence of Cu(II) ions) and then placed on the polymeric film surface. After washing, the cyclic voltammogram was recorded in buffer solution and the anodic peak potential measured against that before the contact with DNA. Oxidative DNA damage resulted in remarkable decrease of the anodic peak potential which depended on the oxidant nature and incubation period. Specificity of the DNA – MB interactions was confirmed by surface plasmon resonance (SPR) measurements. Similar experiment performed with polymerized Methylene Green (MG) and Neutral Red (NR) showed lower selectivity of the response toward various sources of reactive oxygen species. The protocol of the DNA damage detection was tested on the estimation of antioxidant properties of green tea extract and red table wine.  相似文献   

7.
Xeroderma pigmentosum (XP) is a genetic disorder associated with defects in nucleotide excision repair, which eliminates a wide variety of helix‐distorting types of DNA damage including sunlight‐induced pyrimidine dimers. In addition to skin disease, approximately 30% of XP patients develop progressive neurological disease, which has been hypothesized to be associated with the accumulation of a particular type of oxidatively generated DNA damage called purine 8,5′‐cyclo‐2′‐deoxynucleosides (purine cyclonucleosides). However, there are no currently available methods to detect purine cyclonucleosides in DNA without the need for DNA hydrolysis. In this study, we generated a novel monoclonal antibody (CdA‐1) specific for purine cyclonucleosides in single‐stranded DNA that recognizes 8,5′‐cyclo‐2′‐deoxyadenosine (cyclo‐dA). An immunoassay using CdA‐1 revealed a linear dose response between known amounts of cyclo‐dA in oligonucleotides and the antibody binding to them. The quantitative immunoassay revealed that treatment with Fenton‐type reagents (CuCl2/H2O2/ascorbate) efficiently produces cyclo‐dA in DNA in a dose‐dependent manner. Moreover, immunofluorescent analysis using CdA‐1 enabled the visualization of cyclo‐dA in human osteosarcoma cells, which had been transfected with oligonucleotides containing cyclo‐dA. Thus, the CdA‐1 antibody is a valuable tool for the detection and quantification of cyclo‐dA in DNA, and may be useful for characterizing the mechanism(s) underlying the development of XP neurological disease.  相似文献   

8.
A hydrophobic room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), was applied as nonaqueous solvent for the generation of hydroxy radical (?OH) through glucose oxidase-catalyzed Fenton reaction. The enzyme catalyzes the oxidation of glucose, and the produced H2O2 further reacts with transition metal ions, generating hydroxyl radicals. They attacked DNA and led its damage. This was detected by square wave voltammetry (SWV) of the electroactive indicator Co(bpy) 3 3+ . It bound more strongly to intact DNA, and the SWV peak currents decreased at the potential of 0.064?V when DNA was damaged. The experimental results testified that the antioxidants, ascorbic acid, aloe-emodin and rutin, inhibited oxidative DNA damage by hydroxyl radicals. The method is promising for rapid, sensitive, and inexpensive detection of DNA damage.
Figure
Schematic diagram for working principle of SWV detection of in situ DNA damage for DNA-GOx film.  相似文献   

9.
Reported here is the crystal structure of a heterocycle that implements a donor–donor–acceptor hydrogen‐bonding pattern, as found in the Z component [6‐amino‐5‐nitropyridin‐2(1H)‐one] of an artificially expanded genetic information system (AEGIS). AEGIS is a new form of DNA from synthetic biology that has six replicable nucleotides, rather than the four found in natural DNA. Remarkably, Z crystallizes from water as a 1:1 complex of its neutral and deprotonated forms, and forms a `skinny' pyrimidine–pyrimidine pair in this structure. The pair resembles the known intercalated cytosine pair. The formation of the same pair in two different salts, namely poly[[aqua(μ6‐2‐amino‐6‐oxo‐3‐nitro‐1,6‐dihydropyridin‐1‐ido)sodium]–6‐amino‐5‐nitropyridin‐2(1H)‐one–water (1/1/1)], denoted Z‐Sod, {[Na(C5H4N3O3)(H2O)]·C5H5N3O3·H2O}n, and ammonium 2‐amino‐6‐oxo‐3‐nitro‐1,6‐dihydropyridin‐1‐ide–6‐amino‐5‐nitropyridin‐2(1H)‐one–water (1/1/1), denoted Z‐Am, NH4+·C5H4N3O3·C5H5N3O3·H2O, under two different crystallization conditions suggests that the pair is especially stable. Implications of this structure for the use of this heterocycle in artificial DNA are discussed.  相似文献   

10.
Carboxylic group-functionalized carbon nanotubes (c-CNT) were modified on the surface of carbon paste electrode to obtain a conducting precursor film. Positively charged poly-l-lysine (pLys) and negatively charged double-stranded DNA (dsDNA) were alternately adsorbed on the c-CNT-modified electrode, forming (pLys/dsDNA) n layer-by-layer (LBL) films. Cyclic voltammetry and electrochemical impedance spectroscopy of the electroactive probe [Fe(CN)6]3−/4− could give the valuable dynamic information of multilayer films growth. The oxidative DNA damage induced by cadmium ion (Cd2+) in the LBL multilayer films was studied by differential pulse voltammetry (DPV) with methylene violet (MV) as the intercalation redox probe. The electrochemical signals of MV on the multilayer films were effectively amplified via LBL technology. The specific intercalation of MV into dsDNA base pairs and the amplified electrochemical response of MV, combined with the unique feature of loading reversibility of MV in the DNA layer-by-layer films, made the difference in DPV response between the intact, and damaged dsDNA films become pronounced. This biosensor exhibited that the (pLys/dsDNA) n films could be utilized for investigations of DNA damage.  相似文献   

11.
《Electroanalysis》2006,18(5):471-477
The precursor film was first formed on the Au electrode surface based on the self‐assembly of L ‐cysteine and the adsorption of gold colloidal nanoparticles (nano‐Au). Layer‐by‐layer (LBL) assembly films of toluidine blue (TB) and nano‐Au were fabricated by alternately immersing the electrode with precursor film into the solution of toluidine blue and gold colloid. Cyclic voltammetry (CV) and quartz crystal microbalance (QCM) were adopted to monitor the regular growth of {TB/Au} bilayer films. The successful assembly of {TB/Au}n films brings a new strategy for electrochemical devices to construct layer‐by‐layer assembly films of nanomaterials and low molecular weight materials. In this article, {TB/Au}n films were used as model films to fabricate a mediated H2O2 biosensor based on horseradish peroxidase, which responded rapidly to H2O2 in the linear range from 1.5×10?7 mol/L to 8.6×10?3 mol/L with a detection limit of 7.0×10?8 mol/L. Morphologies of the final assembly films were characterized with scanning probe microscopy (SPM).  相似文献   

12.
An electrochemical biosensor for mimicking the metal-mediated DNA damage pathway in situ was presented. The Fenton reagents (H2O2 and iron ion) for the DNA damage were generated in situ with a constant rate from the sensing film. H2O2 and iron ion reacted further together to yield hydroxyl radical, which attacked DNA in the film. These courses of DNA damage were just like those happened in organism. The DNA damage was detected by monitoring the differential pulse voltammetric response of an electrochemical indicator, Co(phen)33+. Another electrochemical indicator, Ru(NH3)63+, was also used for monitoring the DNA damage as a complementary means and the minimal detectable amount of DNA damage was 0.16 μg. The biosensor had good reproducibility. After this biosensor was used for 11 times, 90% of the first detection signal was obtained.  相似文献   

13.
The reactivity of the sulfur‐containing nucleoside 4‐thio‐(2′‐deoxy)‐thymidine usually abbreviated as 4‐thio‐thymidine, (S4‐TdR) under Fenton conditions, ie, in the presence of H2O2 and catalytic amounts of Fe(II), was investigated by UV‐vis spectroscopy and electrospray ionization single and tandem mass spectrometry (ESI‐MS and MS/MS). S4‐TdR hydroxylated on the S atom was found to be a key reaction intermediate, ultimately leading to (2′‐deoxy)‐thymidine usually abbreviated as thymidine, (TdR) as the main reaction product. This finding was in accordance with the outcome of the reaction between S4‐TdR and H2O2, previously investigated in our laboratory. On the other hand, the additional presence of ?OH radicals, induced by the Fe(II)/H2O2 combination, led to the increased generation of another interesting S4‐TdR product, already observed after its reaction with H2O2 alone, ie, the covalent dimer including a S? S bridge between two S4‐TdR molecules. More importantly, multihydroxylated derivatives of S4‐TdR and TdR were detected as peculiar products obtained under Fenton conditions. Among them, a product bearing an OH group both on the methyl group linked to the thymine ring and on the C5 atom of the ring was found to prevail. The results obtained during this study, integrated by those found previously in our laboratory, indicate 4‐thiothymidine as a promising molecular probe for the recognition, through a careful characterization of its reaction products, of the prevailing species among reactive oxygen species (ROS) corresponding to singlet‐state oxygen, hydrogen peroxide, and hydroxylic radical.  相似文献   

14.
In the present work, we study the reaction of singlet oxygen (1O2) with isolated DNA. Emphasis is placed on the identification and quantitative measurement of the DNA modifications that are produced by the reaction of 1O2 with DNA. For this purpose, calf‐thymus DNA was incubated with the endoperoxide of N,N′‐di(2,3‐dihydroxypropyl)‐1,4‐naphthalenedipropanamide, a chemical generator of 1O2. Thereafter, DNA was digested, and the resulting oxidized nucleosides were measured by means of a recently optimized high‐performance‐liquid‐chromatography tandem‐mass‐spectrometry assay. It was found that, among the different DNA lesions observed, 7,8‐dihydro‐8‐oxo‐2′‐deoxyguanosine is the major 1O2‐mediated DNA‐damage product. Interestingly, cyclobutane pyrimidine dimers, oxidized pyrimidine bases, 7,8‐dihydro‐8‐oxo‐2′‐deoxyadenosine, and 2,6‐diamino‐5‐formamido‐4‐hydroxypyrimidine are not formed, at least not in detectable amounts, following treatment of DNA with the 1O2 generator. The reported results strongly suggest that the decomposition of the endoperoxide provides a pure source of 1O2, and that reaction of 1O2 with isolated DNA induces the specific formation of 7,8‐dihydro‐8‐oxo‐2′‐deoxyguanosine.  相似文献   

15.
On‐surface degradation of sildenafil (an adequate substrate as it contains assorted functional groups in its structure) promoted by the Fenton (Fe2+/H2O2) and Fenton‐like (Mn+/H2O2; Mn+ = Fe3+, Co2+, Cu2+, Mn2+) systems was investigated by using paper spray ionization mass spectrometry (PS‐MS). The performance of each system was compared by measuring the ratio between the relative intensities of the ions of m/z 475 (protonated sildenafil) and m/z 235 (protonated lidocaine, used as a convenient internal standard and added to the paper just before the PS‐MS analyzes). The results indicated the following order in the rates of such reactions: Fe2+/H2O2 ≫ H2O2 ≫ Cu2+/H2O2 > Mn+/H2O2 (Mn+ = Fe3+, Co2+, Mn2+) ~ Mn+ (Mn+ = Fe2+, Fe3+, Co2+, Cu2+, Mn2). The superior capability of Fe2+/H2O2 in causing the degradation of sildenafil indicates that Fe2+ efficiently decomposes H2O2 to yield hydroxyl radicals, quite reactive species that cause the substrate oxidation. The results also indicate that H2O2 can spontaneously decompose likely to yield hydroxyl radicals, although in a much smaller extension than the Fenton system. This effect, however, is strongly inhibited by the presence of the other cations, ie, Fe3+, Co2+, Cu2+, and Mn2+. A unique oxidation by‐product was detected in the reaction between Fe2+/H2O2 with sildenafil, and a possible structure for it was proposed based on the MS/MS data. The on‐surface reaction of other substrates (trimethoprim and tamoxifen) with the Fenton system was also investigated. In conclusion, PS‐MS shows to be a convenient platform to promptly monitor on‐surface oxidation reactions.  相似文献   

16.
Excessive reactive oxygen species (ROS) can oxidatively damage DNA to cause severe biological consequences. In the study, a natural flavonoid, myricitrin (myricetin‐3‐O‐α‐L‐rhamnopyranoside), was found to have a protective effect against hydroxyl‐induced DNA damage (IC50 159.86 ± 54.24 μg/mL). To investigate the mechanism, it was determined by various antioxidant assays. The results revealed that myricitrin could effectively scavenge ·OH, ·O2?, DPPH· (1,1‐diphenyl‐2‐picrylhydrazyl radical), and ABTS+· (2,2′‐Azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radicals (IC50 values were respectively 69.71 ± 5.93, 69.71 ± 5.93, 25.34 ± 2.14, and 1.71 ± 0.09 μg/mL), and bind Cu2+ (IC50 27.33 ± 2.36 μg/mL). Based on the mechanistic analysis, it can be concluded that: (i) myricitrin can effectively protect against hydroxyl‐induced DNA oxidative damage via ROS scavenging and deoxynucleotide radicals repairing approaches. Both approaches can be attributed to its antioxidant. From a structure‐activity relationship viewpoint, its antioxidant ability can be attributed to the ortho‐dihydroxyl moiety, and ultimately to the stability of its oxidized form ortho‐benzoquinone; (ii) its ROS scavenging is mediated via metal‐chelating, and direct radical‐scavenging which is through donating hydrogen (H·) and electron (e); and (iii) its protective effect against DNA oxidative damage may be primarily responsible for the pharmacological effects, and offers promise as a new therapeutic reagent for diseases from DNA oxidative damage.  相似文献   

17.
A closed bipolar electrode (BPE) system was developed with electrochromic poly(3‐methylthiophene) (PMT) films electropolymerized on the ITO/rGO electrode as one pole of BPE in the reporting reservoir and the bare ITO electrode as another pole of BPE in the analyte reservoir, in which rGO represents reduced graphene oxide. Under a suitable driving voltage (Vtot), the electrochemical reduction/oxidation of electroactive probes, such as H2O2/glutathione (Glu), in the analyte reservoir could induce the reversible color change of PMT films in the reporting reservoir between blue and red. Based on this, a keypad lock with H2O2, Glu, and Vtot=?3.0 V as the three inputs and the color change of PMT films as the visible output was established. This system was easily operated and did not need to synthesize the complex compounds or DNA molecules. The security system was easy to reset and could be used repeatedly.  相似文献   

18.
Four aromatic hybrid Anderson polyoxomolybdates with Fe3+ or Mn3+ as the central heteroatom have been synthesized by using a pre‐functionalization protocol and characterized by using single‐crystal X‐ray diffraction, FTIR, ESI‐MS, 1H NMR spectroscopy, and elemental analysis. Structural analysis revealed the formation of (TBA)3[FeMo6O18{(OCH2)3CNHCOC6H5}2] ? 3.5 ACN ( TBA‐FeMo6‐bzn ; TBA=tetrabutylammonium, ACN=acetonitrile, bzn=TRIS‐benzoic acid alkanolamide, TRIS?R=(HOCH2)3C?R)), (TBA)3[FeMo6O18{(OCH2)3CNHCOC8H7}2] ? 2.5 ACN ( TBA‐FeMo6‐cin ; cin=TRIS‐cinnamic acid alkanolamide), (TBA)3[MnMo6O18{(OCH2)3CNHCOC6H5}2] ? 3.5 ACN ( TBA‐MnMo6‐bzn ), and (TBA)3[MnMo6O18{(OCH2)3CNHCOC8H7}2] ? 2.5 ACN ( TBA‐MnMo6‐cin ). To make these four compounds applicable in biological systems, an ion exchange was performed that gave the water‐soluble (up to 80 mM ) sodium salts Na3[FeMo6O18{(OCH2)3CNHCOC6H5}2] ( Na‐FeMo6‐bzn ), Na3[FeMo6O18{(OCH2)3CNHCOC8H7}2] ( Na‐FeMo6‐cin ), Na3[MnMo6O18{(OCH2)3CNHCOC6H5}2] ( Na‐MnMo6‐bzn ), and Na3[MnMo6O18{(OCH2)3CNHCOC8H7}2] ( Na‐MnMo6‐cin ). The hydrolytic stability of the sodium salts was examined by applying ESI‐MS in the pH range of 4 to 9. Sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS‐PAGE) showed that human and bovine serum albumin (HSA and BSA) remain intact in solutions that contain up to 100 equivalents of the sodium salts over more than 4 d at 20 °C. Tryptophan (Trp) fluorescence quenching was applied to study the interactions between the sodium salts and HSA and BSA at pH 5.5 and 7.4. The quenching constants were extracted by using Stern–Volmer analysis, which suggested the formation of a 1:1 POM–protein complex in all samples. It is suggested that the aromatic hybrid POM approaches subdomain IIA of HSA and exhibits hydrophobic interactions with its hydrophobic tails, whereas the Anderson core is stabilized through electrostatic interactions with polar amino acid side chains from, for example, subdomain IB.  相似文献   

19.
Excessive consumption of Fe (II) and massive generation of sludge containing Fe (III) from classic Fenton process remains a major obstacle for its poor recycling of Fe (III) to Fe (II). Therefore, the MHACF‐MIL‐101(Cr) system, by introducing H2, Pd0 and MIL‐101(Cr) into Fenton reaction system, was developed at normal temperature and pressure. In this system, the reduction of FeIII back to FeII by solid catalyst Pd/MIL‐101(Cr) for the storage and activation of H2, was accelerated significantly by above 10‐fold and 5‐fold controlled with the H2‐MIL‐101(Cr) system and H2‐Pd0 system, respectively. However, the concentration of Fe (II) generated by the reduction of Fe (III) could not be detected with the only input of H2 and without the addition of MOFs material. In addition, the apparent consumption of Fe (II) in MHACF‐MIL‐101(Cr) system was half of that in classical Fenton system, while more Fe (II) might be reused infinitely in fact. Accordingly, only trace amount of Fe (II) vs H2O2 concentration was needed and hydroxyl radicals through the detection of para‐hydroxybenzoic acid (p‐HBA) as the oxidative product of benzoic acid (BA) by·OH could be continuously generated for the effective degradation of 4‐chlorophenol(4‐CP). The effects of initial pH, concentration of 4‐CP, dosage of Fe2+, H2O2 and Pd/MIL‐101(Cr) catalyst, Pd content and H2 flow were investigated, combined with systematic controlled experiments. Moreover, the robustness and morphology change of Pd/MIL‐101(Cr) were thoroughly analyzed. This study enables better understanding of the H2‐mediated Fenton reaction enhanced by Pd/MIL‐101(Cr) and thus, will shed new light on how to accelerate Fe (III)/Fe (II) redox cycle and develop more efficient Fenton system.  相似文献   

20.
Based on the immobilization of horseradish peroxidase (HRP) in chitosan(CS) on a glassy carbon electrode (GCE) modified with the Au‐Pt alloy nanoparticles (NPs) / polyaniline nanotube (nanoPAN) nanocomposite film, a novel hydrogen peroxide biosensor was constructed. The modified processes of GCE were monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Au‐PtNPs/nanoPAN/CS had a better synergistic electrochemical effect than did AuNPs/nanoPAN/CS or PtNPs/nanoPAN/CS. The amperometric response of the biosensor towards H2O2 was investigated by successively adding aliquots of H2O2 to a continuous stirring phosphate buffer solution under the optimized conditions. Because Au‐PtNPs have unique catalytic properties and good biocompatibility, and especially Au‐PtNPs and nanoPAN have synergistic augmentation for facilitating electron‐transfer, the biosensor displayed a fast response time (<2 s) and broad linear response to H2O2 in the range from 1.0 to 2200 μmol L?1 with a relatively low detection limit of 0.5 μmol L?1 at 3 times the background noise. Moreover, the biosensor can be applied in practical analysis and exhibited high sensitivity, good reproducibility, and long‐term stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号